TECNICO
LISBOA

Efficient Data Structures with GraalVM Native Image

Roman Babynyuk

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Rodrigo Fraga Barcelos Paulus Bruno

Examination Committee

Chairperson: Prof. Mario Jorge Costa Gaspar da Silva
Supervisor: Prof. Rodrigo Fraga Barcelos Paulus Bruno
Member of the Committee: Prof. Luis Manuel Antunes Veiga

June 2023

Declaration
| declare that this document is an original work of my own authorship and that

it fulfills all the requirements of the Code of Conduct and Good Practices of
the Universidade de Lisboa.

Acknowledgments

First and foremost, my deepest gratitude goes to Rodrigo Bruno, my supervisor, whose patience
in providing guidance, insights and teaching was quintessential to this thesis’ completion, along with
Professor Luis Veiga, whose pertinent questions and detailed evaluation of the project for this thesis
were invaluable to fully define our scope, goals and methods.

I'd also like to thank my partner, Mariana, for the endless support and care I've received throughout
the process, having made the process far easier on the mind.

Further acknowledgements go to my friends Patricia Piedade and Jodo Marques, for their crucial
help in proofreading and pushing me onwards, along with my colleague Rafael Soares, whose rousing
speech helped me and many of my colleagues push ahead in the final stretch.

Finally, to the Native Image and GraalVM teams and the developers in the GraalVM Slack, my deep-
est regards for the myriad of help given to me throughout the process. The insights provided were

invaluable to development of both ideas and code.

Abstract

Data structures often constitute a large proportion of a program’s total memory footprint and are fre-
quently used inefficiently, where only a small part of the allocated memory is in use, with the rest being
effectively wasted (by having been allocated but never actually used). Addressing this issue requires not
only more careful selection of data structures by developers, but also automatic data structure optimiza-
tion. Automatic optimization is a necessity, as many data structures are by their nature inefficient, and a
developer cannot avoid using them entirely. While there are many compile-time optimization techniques,
these mainly focus on increasing execution speed instead of reducing memory footprint.

The objective of this work is to focus on automatic memory optimization, specifically data structure
memory footprint. We present a novel algorithm for compiler-driven analysis of application code and
optimization of inefficient data structures to better match the specific execution profile of the applica-
tion. This optimization is invisible to the developer, having no impact on developer productivity nor the
application’s correctness. It is implemented onto GraalVM Native Image, a Java ahead-of-time com-
piler, by injecting profiling code during compilation, and modifying data structure allocation calls where
necessary.

Our results, obtained from the execution of synthetic benchmarks and popular microservices, show

a measurable decrease in the program’s memory footprint, reaching reductions of up to 30%.

Keywords

Data structure, Ahead-of-time compilation, Native Image, Static analysis, Closed-world assumption

Resumo

Estruturas de dados constituem uma grande porgao da memaria ocupada por software, sendo muitas
vezes usadas de forma ineficiente, onde apenas uma pequena parte da memoria alocada é efetiva-
mente utilizada, com a restante por¢do desperdicada. E crucial que os desenvolvedores minimizem o
uso de estruturas de dados e algoritmos ineficientes no seu cédigo, mas nao € suficiente. Otimizacao
automatica é necessaria, dado que muitas estruturas sao ineficientes por natureza, e um desenvolve-
dor nao consegue evitar usa-las por completo. Embora existam numerosos métodos de otimizagao em
tempo de compilacéo, estes tém um foco maior no aumento da velocidade de execugao.

O objetivo desta tese foca-se em vez disso na otimizacao automatica de memaria, nomeadamente
estruturas de dados. Apresentamos um novo algoritmo, integrado na compilagédo, para analise de
bytecode e transformacéo de estruturas de dados para versdes mais apropriadas para o contexto de
utilizacdo. Esta substituicdo ocorre de forma invisivel para o programador, ndo alterando a funcional-
idade do programa. E implementada sobre GraalVM Native Image, um compilador Java Ahead-of-
time, injetando codigo de profiling durante a compilagao, e modificando a alocacédo de estruturas onde
necessario.

Os nossos resultados, obtidos através da execucao de benchmarks personalizadas e micro-servicos
populares, mostram uma redugao no espaco de memoria ocupado pelo programa, atingindo reducdes
de até 30%.

Palavras Chave

Estrutura de dados, compilacdo ahead-of-time, Native Image, Analise estatica, Closed-world assump-

tion

Contents

1 Introduction
1.1 Motivation L e
1.2 Objectives o e e
1.3 Solution definition L

1.4 Organization ofthe Document. e

2 Background
2.1 TOPpICOVEIVIEW o e e e
2.1.1 Datastructures L e
2.1.2 Optimization of dynamic languages oo
21.3 Nativelmage e
2.1.4 GraalVM Intermediate Representation
2.1.5 Profiler-guided optimizations
2.2 Relatedworks e e

2.2.1 Observations e e e e e e e e

3 Architecture
3.1 Tuning opportunity detection L
3.2 Application Execution Profiling
3.3 DataStructure Tuning e e
3.3.1 Tuningalgorithm e

3.3.2 Theoreticalresults e e e e e

4 Implementation
4.1 Analysis and opportunity detection
4.2 Profiling . . . o o e e e
4.3 TUNING e e e e e e e

5 Evaluation
5.1 Methodology e e e e e
5.2 Results e e e e e

vii

6 Conclusion
6.1 Conclusions
6.2 Future Work

Bibliography

viii

List of Figures

2.1
2.2

2.3

3.1

3.2

3.3

4.1

5.1

Diagram of a generic HashMap, showing a collisionat A[5].
Diagram of a generic, but more realistic, HashMap, showing two values for the same key
at A[2], and a collision of two keys, each with its own values, at A[5].
Java source code where a HashMap is used, and the IR generated from it. Some ele-
ments from the IR such as exception flows were truncated from the graph shown here in

theinterest of readability.

Flow diagram of the process of obtaining an optimized executable through profiler-guided
optimization. e e e
Evolution of allocated space (S,), with (green) and without (red) our optimization as a
function of the number of entries in a HashMap (¢). The optimized line contains two
repeating "sections”: the first one (e.g. e = [96..121]) demonstrates our prevention of a
resize while avoiding a load factor of 1 (average load factor for the entire graph is 0.827);
while the second (e.g. e = [122..191]) "section” shows how we reduce the impact of an
unavoidable resize. S, has no unit, as this is a theoretical language-agnostic simulation. .
Theoretical HashMap footprint reduction as a function of the number of entries in a
HashMap (e), represented by the green line. As explained above, when a resize is in-
evitable, the value of our footprint reduction linearly decreases as e grows towards S,,. On
average, our optimization yields a theoretical footprint reduction of 30%, represented by

theblueline. e e e e

The same operation (instantiating a new HashMap and initializing the property fields) as
represented after phase 0, and after phase 45. Note that some edges and floating nodes
were removed for readability, and that the init method’s representation in phase 45 is

not fully shown in the image in the interest of space onthepage.

Comparison of optimized and unoptimized execution time for our micro-benchmark.

11

11

34

41

55

List of Tables

2.1

3.1
3.2

5.1

5.2

Related works and their characteristics

Allocated and usable space of HashMaps as a function of resizes (Java default values)

Utilization and used space as a function of entries. Load (I) refers to how much of the
allocated space is being used, while utilization (u) denotes the proportion between entries
and how much space is effectively usable (maximum number of entries before a resize is
triggered). All values calculated using a default load factor of 0.75 and default doubling

FESIZING. . . o v o e e e e e e

Best case results, e = S,_1 x 0.8. All memory values are in kb. Average RSS reduction:
3,950%. .« . i e
Worst case results, e = S, 1 + 1. All memory values are in kb. Average RSS reduction:
1,486%. . . . o e e e e e e e

Xi

24

Xii

Listings

2.1
2.2
3.1
3.2
41

4.2

4.3

4.4
4.5

Example of source code as it entersthe compiler..,
Example of source code optimized as a result of staticanalysis.
Java-style pseudocode for the tuning opportunity detection algorithm.
Java-style pseudocode for the tuning algorithm. oL,
Phase declaration and main entry point for our optimization. Some variable declarations
were omitted for readability.
Declaration and allocation of the profiling information "database”. Allocation of the nested
Map entries occurs on an as-needed basis whenever the target HashMap is first accessed.
MapCalculator object, which stores all of our profiling information about a given HashMap.
In the interest of space, the methods are presented in interface form, and getters/setters
FEMOVE. e e e e e e e e e e e e
Implicit calling of the HashMap.<init>method.

Original and tuned calls for the allocation of a new HashMap object.

xiii

42

44

Xiv

Introduction

Contents
1.1 Motivation @i e e e e e e e e 3
1.2 Objectives ot i i e e e e e e 4
1.3 Solutiondefinition e e e e 4
1.4 OrganizationoftheDocument ittt 5

Data structures rank among the very first things a Computer Science student learns, and for good
reason: they are a fundamental building block in almost every language and program. It is practically
unfeasible to write any algorithm or program without using one. It then follows that out of a program’s
memory footprint, the majority is consumed by data (and the data structures it is stored in). While
data optimization is by no means an abandoned topic, the increasing memory capacities of consumer
machines, along with the small impact data structure inefficiencies have for small scale computing,
mean that it is not as much of a priority for most developers as it was when a system’s total capacity was
measured in KB. That being the case in small-scale computing, it is however an extremely important topic
in large-scale computing, such as server-side programs. In these use cases, where any program may
handle thousands or millions of data structure entries, memory limitations again come into prominence.

As reported in the US Equities Historical Market Volume Data provided by Cboe Exchange, Inc.
[1], across all U.S. equities exchanges and trade-reporting facilities, the number of shares handled on
21/10/2022 equals 12.3 billion entries. Assuming each trade occupies around 100KB of data, decreasing
the space requirements per trade by 1KB, roughly 1%, decreases the day’s memory footprint by 11.5
terabytes. In storing the year’s trades, a decrease of 4.1 petabytes. It is in these scenarios where
data optimization plays an extremely important role, as even individually miniscule optimizations (or lack
thereof) make an order of magnitude of difference in how much data can be stored/processed, and

hence the system’s effectiveness.

1.1 Motivation

Data is stored within data structures. These can vary by language, but all of them are invariably devel-
oped and tuned towards the “average use case”. When their usage deviates from this targeted usage,
efficiency (be it in terms of time or space) takes a hit. For example, a standard ArrayList in Java is
allocated with 10 empty slots, resizing itself if more are needed. If the developer only ever uses 4 of
those slots, the remaining space goes untouched, though allocated. In addition, some data structures
are developed to target a specific characteristic such as access speed, in detriment of their efficiency in
other areas. A hashtable, for instance, may be allocated with just enough slots for the number of items it
is expected to store. And yet, it is statistically unlikely that all of them will be filled evenly. It is expected
that multiple entries of the table will remain empty throughout its entire lifespan, occupying significant
memory space. Sparse data is another such example, where a majority of space goes unused though
allocated.

Developers, too, play a role in memory efficiency. Custom data structures, designed and tuned for a
specific use case by the developer are rare, with most developers preferring to simply use “off-the-shelf”

structures, accepting the efficiency decrease in exchange for the reliability, ease of development and

code simplicity that come with them. This “acceptable overhead” may be negligible in small consumer-

facing applications, but prove costly for use cases such as big data or server-side applications.

1.2 Obijectives

With that, we identified the following opportunity: optimize generalist data structure memory allocation
to better match the specific use case the developer created. The objective of this work can be broken
down into three main points, as follows.

First, the study of data structures, namely in terms of their prevalence, usage patterns, inefficiencies,
and alternatives. Given all data structure design involves balancing characteristics such as access
speed and memory usage, this will provide us with the information necessary to accurately strike a
balance between the optimization of memory usage, development time or execution time. With this
information, an optimization algorithm can be developed. The real-world data necessary for this study
will be collected automatically by a profiler, injected into the code during compilation.

Second, the design and implementation of such an algorithm onto an existing compiler. In this step, a
modification of the compiler is made such that during compilation, the algorithm scans the Intermediate
Representation for optimization opportunities and, based on profiling data, decides if and how to modify
the current data structure. This change must be transparent to the developer/user, and easy to use.
Given it is a compiler integration, the developer does not need to perform any change to the source
code, just build it with our modified compiler.

The third objective is to evaluate the results of our modification through a performance evaluation
which takes advantage of several benchmarks representing real-world scenarios. The optimization must
not impact the program’s correctness (i.e. the program’s logic or behavior must not be modified in any
way) nor can it be allowed to diminish its throughput or responsiveness (latency). This is called a trans-
parent (to the developer, who does not know modification of their work has taken place) optimization.
Ideally, the added efficiency in memory usage will translate into better locality and thus a performance
improvement. However, the main goal and evaluation objective is memory footprint reduction in realistic

workloads.

1.3 Solution definition

The problem and its challenges as described in Section 1.1 provide us with a starting point to define a
solution: automatic data structure modification at compile-time, informed by profiling.
It must be automatic, in order to not increase the developers’ workload. Additionally, it must target

the commonly used default data structures, and work to optimize them for memory efficiency outside the

“average use case”, without impacting performance.

Executing the tuning operations at compile-time allows for automatic optimization, while not intro-
ducing additional performance overhead from having them execute at run-time. The optimization itself
consists of modifying the current structures’ memory allocation and growth to better fit the usage pat-
terns of the application. Said patterns can be obtained through profiling. To achieve this, we implement
two phases onto the GraalVM Native Image ahead-of-time compiler, to be executed separately. First,
relevant data structures are found and profiling instructions are appended for an execution to ascertain
the aforementioned usage patterns. Second, using the collected profiling information to modify said data

structures to reduce their size to one that more closely approaches their actual usage.

1.4 Organization of the Document

In Chapter 2, we provide information relevant to the understanding of this thesis. This is done in two
portions: Section 2.1 provides the reader with a high-level explanation of the concepts necessary to
understand the topic and thesis; Section 2.2 then elaborates on related works: what has been done in
the field of memory optimization, their results, contributions and drawbacks. This chapter also contains
a deeper dive into GraalVM and the Native Image sub-component, providing relevant details of these
systems.

The solution’s architecture is detailed in Chapter 3, providing a thorough explanation on the theory
behind data structure optimization, the solution’s algorithms, along with theoretical details about data
structures and how it influenced the work’s logic and choices.

Chapter 4 contains information on the implementation of our solution and its components. Besides
justification for the choices of platform, language, targeted data structures and practical details of algo-
rithms, we detail our process for search, decision and modification, its integration and effects, along with
examples of these methods.

In Chapter 5 we outline our evaluation process, including what data will be needed, along with our
goals for this project’s results. In addition, we detail our evaluation methods, the reasons behind their
choosing, and how the data they generate provides meaningful results. Having defined our criteria and
goals, we then detail the results obtained from said methods, and perform analysis on them.

Chapter 6 contains our main conclusions and information regarding potential future work to build

upon our research and development.

Background

Contents
2.1 TOpPICOVEIVIEW v i i i s ittt e e e e e e e e e e e e e e 9
22 BRelated WOrks v i i i ittt et e h e e e e e e e e e e e e e 17

Data structures are a prevalent feature in most programming languages, whether explicitly or not.
The first section of this Chapter provides the reader with the necessary background information to un-
derstand the concepts upon which this work is based, along with information on the challenges in terms
of data structure optimization. Optimization is an equally wide and varied field, from attempts to improve
the cross-language definitions of algorithms, data structures, paradigms and good practices, to highly-
specific optimizations such as compressing pointers in linked lists [2]. Scope, objectives, methods and
target languages vary immensely, and the second section of this Chapter will provide examples of works
whose methods, scope or objectives are closest to our work, along with descriptions on their applicability

and eventual contributions to this work.

2.1 Topic overview

The following subsections will provide the reader with important information regarding the particulars of
data structures and their optimization as a whole, the challenges involved, and the tools we chose to use
to help us tackle them. Subsection 2.1.1 presents a short introduction on data structures, their design
and usage, along with an introduction on the theory of HashMaps, that will serve as a basis for the more
in-depth analysis in Chapters 3 and 4. Following this, we present a brief overview of the particularities
and challenges inherent to the optimization of dynamic languages such as Java. Subsections 2.1.3 and
2.1.4 introduce the tools we use to solve the aforementioned challenges, and thus enable our optimiza-
tion techniques. The last Subsection of this topic overview focuses on profiler-guided optimization, with
our work being part of this family of techniques. As such, we present a brief overview of the importance
and methodology of such optimizations, their purpose, along with information on works in the area we

consider relevant to understand profiler-guided optimization.

2.1.1 Data structures

A data structure is at its core a layout in which to store data, with the intention of increasing efficiency and
providing additional tools in its use [3]. A data structure may take many forms, from simple arrays to more
complex graphs and hash maps. Some are more specialized than others, allowing for fast lookup of data
(such as binary trees) or reduced memory utilization, for example. They are an ubiquitous component
of programming, and by design able to be used in a large number of scenarios. This adaptability,
however, may lead to issues of inefficiency, as an “off-the-shelf” data structure may not be as efficient
as one purpose-made for the scenario, with factors such as development time making it impractical
to create the "ideal” data structure for every use-case. Additionally, programming is not reserved to
software engineers. Efforts to expand basic programming knowledge to a vast array of STEM (science,

technology, engineering and mathematics) fields like Physics or Mathematics, code schools focused

on practical coding knowledge that do not cover topics such as data structure theory, and low-code
platforms mean that many developers may not have the necessary knowledge to identify why certain
data structures may not be the most efficient in a given context. This work will focus on the aspect of
data structures in the Java language, both due to its position as one of the most used languages, and
how it allows ample and very flexible usage of non-optimal data structures. For the purposes of notation
clarity, HashMap refers to the theoretical definition of the data structure, and HashMap refers to its specific

implementation/object in Java.

It is entirely unfeasible for the designers of any programming language to develop an ideal data
structure for every single possible use case or developer intention. As such, any data structure to be
included in a language’s development kit must be able to be used in a multitude of scenarios. A Map, for
example, must be able to accept any type of object both as value and as key to said value, and support
not only the standard map operations such as retrieving a value with a specific key, but also operations

more commonly associated with other structures, such as iterating through all entries.

In addition to this "swiss-knife” design, there are numerous performance characteristics that must
be taken into account during design and usage of a data structure, such as access speed or memory
efficiency. Attempting to increase one will inevitably lead to a decrease of another. As an example, let
us take a simple linked list. To know how many entries it contains, one would have to iterate through all
of them and count. This can be circumvented by keeping a variable containing the current number of
entries, and updating it upon removals and insertions. To accelerate insertions at the end, one would
need to store the last value’s reference as well. In both of these situations, an improvement in temporal
performance is obtained at the cost of additional memory footprint. These trade-offs may seem small in
practice, but as demonstrated in works such as [4], an object’s properties may, in some situations, take
up more space than the data it is meant to contain. Some data structures, on the other hand, eschew
attempting to balance these characteristics in favor of maximizing one or several of them. An interesting
example of this approach is the HashMap (also known as a HashTable). This family of data structures

prioritizes access time, trading off space efficiency to obtain average O(7) read and write speeds.

Given the large amount of existing data structures, there are equally many situations where a non-
optimal structure may be used. This work, however, will focus on one specific situation: where the
structure, in light of its usage, occupies more memory space than is necessary. Examples of this are
the aforementioned HashMaps and sparse matrices. In a sparse matrix, most positions are empty, and
will remain so throughout the entirety of the execution. These positions are allocated, however, which
means that by definition over half of the memory used by the sparse matrix is being wasted. Thus, usage
of structures such as these presents an opportunity for reducing their memory footprint by minimizing

empty entries based on effective utilization.

A HashMap is a form of key-value store, consisting of an Array A and a hashing function h(k) [3].

10

0 1 2 3 4 5 n

Vo Va2 Wy Vg0 V51 A\

Figure 2.1: Diagram of a generic HashMap, showing a collision at A[5].

Given a key k, the hashing function uses k to obtain an index, denoting the value’s location in the Array.
Thus, the value can be accessed at A[h(k)]. In an ideal HashMap, the array’s size is large enough to
fit all elements in individual entries (called buckets) and the hashing function is collision-free, that is, no
two keys exist that produce the same index as a result of the hashing function. However, such properties
are not feasible in reality due to the sheer size of such an ideal HashMap. Thus, there will be situations
where different keys produce identical indexes, or several values are stored with the same key. In such
situations, the value may be placed in another algorithmically-chosen bucket, or share the bucket with
other values, as shown in Figure 2.1. A common implementation is to have the values stored as a
linked-list in each bucket.

In practice, HashMap implementations tend to be more complex than this theoretical example, due to
the desire to support more operations, such as checking whether a given key is present (thus requiring
keys to be stored). Additionally, the possibility of collisions requires us to differentiate inside a given
bucket between values belonging to different keys. Figure 2.2 demonstrates a diagram with this added

complexity.

0 1 2 3 4 5 n

. . . Kea: V. V1] .
Y Ko LW Y - Knt W
KoV 2t Vo, V1l Ka:Vp Ka [Vl - V0

Figure 2.2: Diagram of a generic, but more realistic, HashMap, showing two values for the same key at A[2], and a
collision of two keys, each with its own values, at A[5].

The objective of this thesis is to exploit this opportunity by creating and implementing a technique
which automatically detects and optimizes data structures according to predetermined heuristics, along

with data derived from the application’s usage of said data structure.

2.1.2 Optimization of dynamic languages

This kind of optimization is, however, not always possible, especially in the context of Java. Java’'s
somewhat dynamic structure provides a significant challenge: classes are not all loaded a priori. Java
classes are compiled and loaded only when they are first called or referenced (i.e. when needed).
This demonstrates the limitation mentioned in the previous paragraph: a class may be loaded initially
and deemed fit for tuning. Later in the timeline, the JVM may load another class which interacts with

the previously optimized one in ways that are incompatible with the optimization, or load a class that

11

overwrites a method that was previously used for tuning purposes. The issue this raises is simple to
describe: an assessment which holds true now (“Is this data structure safe to modify?”) may not be true
in the future. We need, then, a way to know a priori which classes will be loaded, so that we can ensure
that the objects we modify will indeed remain safe to modify throughout. In addition, "de-optimization”
(removing the optimization by returning to the previous state) is made hard with data structure tuning,
as the memory’s layout at a later point post-tuning may hinder efforts to, for example, return the data
structure to its original size.

Rarely do compilers directly convert source code into machine code. There are often multiple steps
in the process, and one of them is Intermediate Representation (IR), which allows for many of the
optimizations we see in compilation. IR is a data structure (frequently in form of a graph) obtained
from an initial translation of the source code. This IR, if properly created from the source code, creates
numerous opportunities, such as the ones we will take advantage of in this work, namely code analysis
(through analyzing the graph’s shape and flow, for example) and optimization (with the information from
analysis). We will expand upon the uses and research on Intermediate Representation in the following
subsections.

After these challenges, which tend to affect to some degree all attempts at optimization, there are
some challenges specific to our technique. Firstly, the aforementioned java capability for dynamic class
loading may hamper our efforts to detect data structures viable for tuning, or introduce new methods or
behaviors that affect the accuracy with which we are able to model the data structure’s usage patterns.

The most difficult issue is perhaps the act of profiling: for good optimization, the data obtained
must be as accurate as possible. This entails correctly instrumenting all interactions which modify the
structure’s contents or size, using accurate data for the profiled executions, and calculating with high
accuracy the resulting statistics, which will inform the decision whether or not to optimize any given data

structure.

2.1.3 Native Image

These notions then bring us to our choice of base upon which to build this project: GraalVM [5], a
HotSpot-based Java Virtual Machine, and most importantly its Native Image component [6]. The nature
and features of GraalVM and its components allow us to bypass some of the challenges outlined above,
and otherwise simplify some of the work required to research and implement our optimization.

First, Native Image allows for something uncommon in Java: ahead-of-time compilation, compiling
the whole program at once and creating an executable binary, much as other non-interpreted languages
such as C do. Besides the faster startup and lower memory footprint this brings, it solves our chal-
lenge with class loading by searching for and integrating all classes that would be dynamically loaded

throughout a “classic” JVM-based execution. This approach allows us to apply the "closed-world as-

12

sumption” logic paradigm with regards to verifying whether an optimization will be safe for the entirety of
the program’s runtime. Per Reiter [7], in a closed-world assumption, "a negative fact is implicitly present
provided its positive counterpart is not explicitly present.” [7], that is to say, we may only assume as true
that which we can prove to be so. For the purposes of Native Image, and thus our work, if all classes
the program uses are loaded at once during compilation, then the value of our assertion (“Is this data
structure safe to modify?”) can be reliably calculated, and will remain unchanged throughout compila-
tion/execution. To verify this, the Native Image compiler goes through the entire application classpath
and loads all classes. Afterwards, with the main method as the entry point, it traverses all of the code
and prunes any class or method that cannot be reached, that is, that will not be used. Therefore, from
this static analysis, it is possible to prove types for class fields and, by extension, that the closed-world
assumption holds true.

Second, GraalVM possesses a very complete Intermediate Representation, GraallR [8], with an API
and tools available to facilitate its viewing, interpretation and usage [9]. As such, this IR allows us to
more easily analyse the code, and implement our optimization strategy, as we can integrate it into the
remaining compiler optimizations performed onto the IR.

As a third benefit, there are also several profiling tools. By using these, directly or with modification,
we can obtain relevant information on the program’s behavior and usage of data structures. These allow
us, for example, to decide whether it is beneficial to alter a given data structure’s characteristics given

its real-world usage in the program.

2.1.4 GraalVM Intermediate Representation

Intermediate Representation, specifically GraallR, plays a major role in all aspects of this work. It is
the base for all of our operations, from the discovery of potential optimization opportunities, to their
implementation onto the program. The only step not directly based upon the IR is the execution of
the profiled program, though the profiling instructions are also inserted at the IR level. It is not an
exaggeration to say that were GraallR any less feature-rich, our work would have been substantially
more difficult. Thus, understanding its functionality is integral to understanding the details of our work.
GraallR is "a graph-based IR that models both control-flow and data-flow dependencies between
nodes” [8]. This IR, generated from the source code during compilation, represents in a directed graph
the program’s code, with nodes representing instructions, and separate edges for data and control flow.
An example of source code can be seen in Figure 2.3, along with the corresponding (simplified for
readability) IR. This graph contains not only the allocation and method calls, but also all of the routines
inherent to the data structure’s usage, such as memory allocation, accesses, and the multitude of safety
checks performed by Java when it is accessed. All of this information is very useful for optimization

purposes. For example, node 64 in Figure 2.3 corresponds to the new HashMap<>() section of the

13

64 New HashMap

| 67 Write#INIT_LOCATION ‘

| 69 Membar#INIT_LOCATION |

[
68 FixedValueAnchor

60 BoxNode$AllocatingBox

| 48 Invoke#Direct#HashMap. put |

=

| 49 Invoke# Direct#HashMap.get |

public class TestClass {
public static void main(String[] args) {
HashMap<Integer, String> exampleMap = new HashMap<>();
exampleMap.put(8, "Goodbye, World!");

? 50 Invoke#Direct#PrintS print!
System.out.println(exampleMap.get(8)); DL DR E AL e DR TR |
}
)
(a) Source code (b) IR Graph

Figure 2.3: Java source code where a HashMap is used, and the IR generated from it. Some elements from the IR
such as exception flows were truncated from the graph shown here in the interest of readability.

code, allowing us to add the newly-declared data structure to our list of potentially optimizable instances
whereas node 48, representing a call of the put () method, denotes one of the accesses to the structure.
This access is one we seek to instrument in order to collect our profiling data. The ability to directly rep-
resent instructions as nodes makes it relatively simple to not only track structures and their interactions,
but also to insert new instructions (to enable our runtime collection on the structure’s usage) and modify
existing ones (such as modifying the allocation method’s arguments to change the structure’s initial size

or load factor).

Intermediate representation sits at the core of Native Image, enabling both the ahead-of-time compi-
lation process as well as the numerous optimization procedures applied by the Native Image compiler.
After the initial IR is generated from the input source code, Native Image performs several successive
optimization "passes” (called phases), taking advantage of the traversal opportunities presented by the
graph representation. Initially, this entails the traversal of the graph’s control and data flow edges to
uncover all of the classes accessed by the program throughout its execution. Accordingly, classes that
will not be used during execution can be safely discarded (pruned), reducing the "bloat” common to stan-

dard JVM-based execution. Following phases perform analysis on the graph, identifying opportunities

14

for further optimizations. At the end of the compilation, the graph’s final version has been the target of
numerous optimization passes, and represents a far more efficient program than the one it received as
input. We will provide a deeper look into compiler and IR-based optimizations in Chapter 3.
Intermediate Representation has served as the basis for numerous works on optimization. The work
of Lattner [10] provides very valuable knowledge on several central concepts for this thesis, such the
analysis and modification of data structures at compile-time, the creation and analysis of intermediate
representation graphs, and shape analysis, allowing for the recognition of patterns within these graphs,
which can then be optimized. This work’s main goals do not particularly align with our thesis, them being
pointer analysis and locality improvement through “Automatic Pool Allocation” [10]. In addition, they
introduce “Automatic Pointer Compression, which reduces the size of pointers on 64-bit targets to 32-
bits or less, increasing effective cache capacity and memory bandwidth for pointer-intensive programs”

[10]. However, many of the methods, insights and drawbacks are applicable.

2.1.5 Profiler-guided optimizations

Static analysis, which in the context of this work refers to analysis of the IR graph, can allow for some
very impressive optimizations. Listings 2.1 and 2.2 demonstrate this potential: through static analysis,
the compiler knows exactly how many times total will be incremented, and thus can assign to it the
final value directly. Further, the compiler also knows said variable will never be used elsewhere in the
program. Knowing this, there is no need to have a variable at all, and the compiler will simply use the
final value as argument to the print1ln method. Through static analysis optimizations, the compiler has
saved memory (variables total and i) and execution time (the for loop).

However, static analysis is limited in what it can "know” about the program, and thus in its ability
to optimize it. Taking the aforementioned example, imagine that '123456’ (from Listing 2.1) was not a
hard-coded value, but rather a variable whose value is assigned at runtime by the user (through the
command line, for example). In such a situation, the compiler cannot perform any of the optimizations
it did in the example, since it cannot know how many times the loop will be executed, even if the user
inputs the same value in every single execution.

Profiling, in essence, entails executing the target program simulating real usage, while collecting
data on how it is behaving. By profiling the example code, we are able to determine that the user always
inputs '123456’, for example. Passing this information to the compiler, it once again is able to perform
the above-described optimizations. This is an example of a profiler-guided optimization, where profiling
data is used to enable optimizations that would be unfeasible without it. The profiling information can
be stored and passed to the compiler to be used for future compile-time optimizations [11], or used
during said execution to speed it up [12—15]. The just-in-time compilation of the HotSpot JVM can be

considered an example of the latter, as the JVM will interpret most bytecode, but will directly compile to

15

Listing 2.1: Example of source code as it enters the compiler.

1+ int total = 1;
2> for (int i = 0; i < 123456; i++) {total++;}
3 System.out.println(total);

Listing 2.2: Example of source code optimized as a result of static analysis.
1 System.out.println(123456);

machine code bytecode sections that it recognizes as executing frequently, improving their performance.
The decision whether it is worthwhile to spend execution time to compile a given bytecode section is

informed by the JVM profiling how often each section is executed.

Data structures are especially resistant to static analysis-based optimizations, as they tend to be
used to store information obtained at runtime, and thus we cannot know a priori just how many entries
a given structure will have when the program terminates. Given our work focuses on improving the
memory usage of data structures by tailoring their size to how much data they will contain, profiling is a

central aspect of it.

The work of Gope and Lipasti [13] uses profiling information to dynamically optimize executions
through the inlining of hash maps in scripting languages. According to the authors, in a compiled lan-
guage, such as Java, the properties of an item would be stored in an object. However, in scripting
languages hash maps are often used to this effect, storing a fixed set of keys as a substitute for value
fields. As such, this work “describes a compiler algorithm that discovers common use cases for hash
maps and inlines them so that keys are accessed with direct offsets” [13]. While the authors showed

promising results, their work relates to scripting languages and thus does not transfer to Java.

Another excellent work of runtime optimization is that of Kessels [16]. Focusing primarily on trees,
this work focuses on optimization as a collection of low-scale operations that are appended to the access
function of the structure. As such, as the structure is accessed, the portions accessed are optimized.
Over the time of the execution, this leads to the structure tending towards an optimized state, with the
benefit that no functionality is lost and that the structure can be fully accessed while it is being optimized.
However, that same integration with access functions means that there is no guarantee a structure will

ever reach a state of optimality, as this is fully dependent on how it is accessed.

16

2.2 Related works

As explored in Chapter 1, the wide availability of large quantities of memory, even in consumer machines,
has driven software and hardware development and optimization efforts towards improving temporal
performance, rather than memory efficiency. From the gaming enthusiast to the professional artist, users
have demanded ever increasing frame-rates and ever decreasing render times. A cursory search at a
local computer store’s website [17] shows that at the time of writing 70% of both laptops and desktops
on sale have 16GB or more of RAM. Thus, it is unsurprising that optimization research has followed suit,
with the majority of the works we found relating to data structure optimization focusing on performance.

While less numerous, there have been several notable works whose focus is memory efficiency
rather than performance. Few works, however, deal with tuning data structures for individual use cases,
preferring to replace them with other structures that may be more adequate [18], or even removing
them entirely through inlining [19]. We were not able to find works whose focus was to use profiling-
guided optimization to tune data structures at compile-time to improve memory usage. That being the
case, while the objectives and methods of the related works described in this section do not necessarily
equate to ours, the results thereof can provide strong insight into the challenges and possibilities of this
thesis.

Before any optimization can take place, the targets for it must be identified and analyzed. Though
some runtime data structure detection works exist [18—20], data structure detection is more frequently
done at compile-time [4, 21-23]. Besides their other contributions, Lattner [10] proposes several new
methods for analysis of IR graphs to detect data structures through shape analysis. The work regarding
a novel IR proposed by Duboscq et al. [24], besides allowing for more flexibility in dynamic optimization
and deoptimization (which tends to be extremely costly in the context of a JIT compiler), reaches several
interesting conclusions, especially with regards to creation, analysis and modification of IR graphs, which
is a central component of the thesis.

With the data structures identified, it must now be decided how to optimize them. Often, especially in
Java, the data for this decision is gathered through runtime profiling [18—20, 25]. The works of Changhee
Jung [18, 20] closely align with our goals in this regard, given their objective is to identify not only which
data structures are used, but to track how the program interacts with them, using runtime instrumentation
to measure the data structure’s memory usage in terms of space and organization, along with read
and write operations. However, no optimizations are directly performed by the algorithms and tools
presented in them. Rather, the data is used to provide the developer with detailed information about
the data structures, allowing the developer to make an informed decision how to best optimize them,
whether that entails using different parameters in their creation, or replacing them with another type.
Our work seeks to go further, by using similar information to automatically perform optimizations, rather

than leaving it to the developer, who may be limited in terms of time or knowledge to fully take advantage

17

of the information provided.

Applying the optimizations is the third and final step in the process. Certain works implement their
optimizations at runtime [16, 25], or just-in time compilation [14]. Particularly, Grimmer et al. [25] take
advantage of the additional information available at runtime to dynamically modify data structures to,
for example, store primitive data types rather than their full-fledged boxed counterparts, reducing each
entry’s memory footprint, and thus the data structure’s as a whole. For some objects, the footprint of the
headers and other non-value fields exceeds the footprint of the value itself [4]. Object inlining, which can
be described as “embedding the payload of an object into another” [4], is a core technique of several
works parallel to ours. A given parent object may possess as a field another object (child), which itself
contains the payload. It then follows that replacing the child value field inside the parent with just the
payload can lead to major memory savings. According to the authors, there are major performance
benefits: up to 3x throughput and up to 40% less memory footprint, all the while requiring only a small
intervention from developers [4]. This approach, however, carries a drawback: automatic inlining is
often infeasible outside of very simple objects due to their structure and usage within the code, requiring
the developer to manually and correctly flag all fields that can be inlined. While our optimization does
not implement any variant of inlining, many of the processes are shared between our work and that
of these authors. Particularly in the case of Bruno et al. [4], the techniques for detecting optimization
candidates and applying optimizations in an ahead-of-time manner in the IR are remarkably similar,
along with both of our works being built upon Native Image and taking advantage of GraallR. Both the
aforementioned work, and those of Dolby [21, 22], perform their optimizations at compile-time, with the
compiler analyzing and automatically inlining objects where it deems possible. The latter work expands

upon it by formalizing a model for inlining, including correctness conditions.

2.2.1 Observations

These works provide a good showcase of the difficulty in memory optimization, especially with regards to
data structures. Firstly, most data structures can be optimized in some way, from simple vectors to trees
[16]. Given this multitude of optimizable data structures, compounded by equally many ways of using
them, it can be a daunting task to select which of them will be the focus of one’s work and research.
None of the works, however, match in full our motivations, objectives and techniques. Instead, we
find ourselves sharing only partial aspects, such as IR analysis [4, 10, 21-24], profiling data collection
[18—-20, 25], and AOT compile-time optimization [4, 10, 21, 22]. One of the major differentiators of
our work is universality: rather than being restricted to a certain type of structure, usage pattern or
architecture, our work seeks to be able to improve the memory footprint of almost every usage of a
given data structure. While Java HashMaps were chosen as the target for the practical aspect of this

work, the same principle applies to all data structures whose instantiation involves the allocation of a

18

predefined number of “slots” and usage-based resizing, such as Arrays. Additionally, our techniques can
be applied to other statically-compiled languages such as C++, making this work’s applicability rather
substantial.

Most of our related works focus on memory optimization, with exceptions such as Lattner [10] and
Duboscq et al. [24], which focus on performance improvement (with possible footprint improvements
being a side effect of their respective techniques). Out of these memory-focused works, the a sizeable
portion [4, 13, 14, 21, 22] implement or develop a variation of an inlining technique, eliminating the data
structure rather than modifying it. While it is effective, it shows its limitations in terms of what can be
inlined without loss of functionality, being rather limited to what Bruno et al. [4] describe as value fields,
that is, objects whose only purpose is to store a specific set of values. Since the number, format and
access pattern of values in, for example, a HashMap is variable by definition, inlining is usually not
possible. The work of Gope and Lipasti [13] is an outlier, but in that work the inlined maps were used
to store a specific set of values, the size of which did not change in execution. In other words, the Hash

Maps were used as value fields. Table 2.1 details some of our related works and the aforementioned

traits.
Table 2.1: Related works and their characteristics

Work Timing Technique Contribution Limitation
Jung and Clark [18], Jung et al. [20] N/A Data structure analysis Analysis algorithms Information only
Kessels [16] Run-time Optimization-on-access On-the-fly optimization Depends on structure usage
Pape et al. [14] JIT Data Structure Inlining Value class optimization Demo language only
Bruno et al. [4] AOT Object Inlining Value fields Developers must flag targets
Lattner [10] AOT Pointer analysis/compression Macroscopic optimization Performance focus
Duboscq et al. [24] JIT Speculative optimization IR Performance focus
Gope and Lipasti [13] JIT Object inlining Hash Map inlining Scripting languages focus
Dolby [21], Dolby and Chien [22] AOT Object inlining Automatic object inlining Finds half of inlining chances

Given these observations, we find our work fits a set of criteria which have not been fulfilled by

previous research, namely:

» Modification instead of inlining or replacement. Data structure tuning allows for a wider set of
optimization opportunities besides value fields, while being more universally applicable than re-

placement:

 Java as the target language. Most related works either target C/C++, a simple demo language, or
none at all. We seek to target Java, it being a widely used language. In addition, we aim for our
work to cleanly integrate into the Native Image compiler, which allows it to be ready for real-world

usage without further adaptation necessary;

» No developer action required. Some of the analysed works require developers to make changes

to their code. In the work of Bruno et al. [4], for example, the developer must explicitly flag in their

19

code the objects which can be inlined. This requires (admittedly trivial) changes to existing code,
and for the developer to have a modicum of knowledge about the topic in order to know which
objects to flag. Our work aims to be completely developer-independent, whereby no changes to
the code are required, and the developer may not even be aware of the optimizations the compiler

runs, as there is no change to functionality;

Ahead-of-time compilation. Many related works implement their optimization as a component of
just-in-time (JIT) compilation (see table 2.1). While there are several advantages to this approach,
the nature of JIT compilation inherently limits the reach of such algorithms, as they may impact
the program’s responsiveness. However, a more likely issue is the introduction of classes mid-
execution, as detailed in Section 2.1. Through the usage of ahead-of-time (AOT) compilation,
namely with Native Image, we can avoid this problem by relying on a closed-world system. All
classes being loaded at compilation, and as such known, allows us to engage in more aggressive
tuning, as we can be sure that there is no danger of them being made invalid/breaking by a mid-

execution class loading.

20

Architecture

Contents
3.1 Tuning opportunity detection il 25
3.2 Application ExecutionProfiling 27
3.3 DataStructure TuNING ¢ i it i i e e e e e e e e 28

21

22

In languages such as C the developer must, in many cases, manually allocate a data structure with
a fixed size based on what they predict the usage to be (or use a value large enough to where it is
implausible the structure will overflow). This is a direct consequence of C’s "the developer has absolute
control over everything” approach. Though powerful and efficient for those with the abilities to take
advantage of this, this is not optional, and C developers without plenty of experience (such as first year

CS students) quickly become familiar with the expression "Segmentation Fault”.

Between the increasing memory capacities of current devices (as described in previous chapters)
and the rise of higher-level languages like Java or Python whose memory management and garbage
collection algorithms continually grow more efficient, this approach has fallen out of favor. The abil-
ity to simply declare a data structure and leave allocation, resize and de-allocation operations to the
language’s control is a popular one, providing far easier development and drastically decreasing the
chances of problems like memory leaks occurring. To enable this, data structures in such languages
automatically change their size as required, as it is generally impossible to determine just how many
entries the structure will receive during execution. In the interest of reducing wasted memory, data
structures are allocated with a predefined small size, and resize if they need to accommodate more

data. Throughout this work we will refer to initial capacity as the starting size of a data structure.

Resizing every time an entry is added is unfeasibly inefficient in terms of CPU cycles, as resizing
is a relatively costly operation. Thus, some sort of heuristic is needed to guide how, when and by how
much the structure grows. Generally speaking, a resize is triggered when a structure reaches a certain
utilization percentage. Given the performance overheads involved in a resize, it is of interest to perform
them as seldom as possible by waiting until the structure is close to full before resizing, and having
the resize create plenty of new empty spaces. While these heuristics are successful in minimizing the
number of resizes, they also have the side effect of wasting memory. After all, the more new spaces
a resize creates, the further away in time the next resize is, but the chance of at least some of these
newly-allocated spaces going unused increases as well. In addition, many data structures never resize
“down”, which means that any growth from resizes is permanent, with small spikes in usage leading to
massive wastes of memory. When the utilization (proportion of total entries that are "occupied”) equals or
exceeds the load factor (proportion of how many entries must be "occupied” before a resize is triggered),

the data structure is resized in accordance with the heuristic that guides the process.

Section 2.1.1 goes into detail on how data structures are built to be most efficient for the "average”
use case, and in general attempt to strike a balance between memory footprint and performance. It is
not surprising, then, that the values for initial capacities and load factors are also defined as a balance
between the two metrics. Larger initial capacities mean less resizes, improving performance at the cost
of a larger memory footprint. This focus on average values means that specific situations end up less

efficient than they could theoretically be. An example would be a structure that stores a small fixed

23

number of entries, that cannot be separated due to a need to be passed as an object (optimizing this
specific situation is the focus of the related work by Gope and Lipasti [13]). In such a situation, the rest
of the structure’s entries are allocated, empty, and will always be so. This inefficiency is cause by the
initial capacity, tailored for the average use case, being too high for this specific situation.

The data structure we chose as focus for this thesis is the HashMap. As a hash-type structure,
it prioritizes fast access times (O(7)) over memory efficiency, being a wasteful data structure in even
the most appropriate use cases. In Java, HashMaps are allocated (unless the allocation is manually
modified by the developer, which is quite rare) with a default size of 16 and a load factor of 0.75. Since a
resize is triggered once utilization is equal/higher than the load factor, 25% of the memory occupied by
the HashMap is always inaccessible, and thus wasted. This 25% waste is actually a best-case scenario
in terms of waste, occurring when utilization is just one element away from a resize. While 25% of 16
spaces is not a major memory waste, it is a constant proportion, and after several resizes becomes very
significant, as can be observed in Table 3.1, wherein after 8 resizes over 1000 spaces are effectively
unusable but allocated.

Table 3.1: Allocated and usable space of HashMaps as a function of resizes (Java default values)

Resizes 0 1 2 3 4 5 6 7 8

Allocated space 16 32 64 128 256 512 1024 2048 4096
Usable space 11 23 47 95 191 383 767 1535 3071

Resizing the HashMap is also a very costly operation in terms of performance. It involves the allo-
cation of additional space (along with potentially having to move the entire structure to another memory
address if the subsequent positions have already been occupied with other data) and, more importantly,
rehashing. During accesses, the hashing function calculates an index where the given object should
be according to its key, and this index is of course dependent on the map’s size. When a map’s size
changes, the index generated by the hash function for a given key may not be the same as the one before
the resize. Let us illustrate this with an example: during data structure introduction courses, the example
often given for a basic HashMap implementation is one that uses prime numbers as a basis for both size
and hashing function. In this example, a HashMap is an Array whose size is a sufficiently large prime
number, such as 317. The hashing function then takes a numeric key, and performs a modulo operation
(h(x) = x mod 317), the result of which is used as the index. If the array were to be resized to some other
prime number, the new hashing function would return a different index value for the same key (x mod
317 # x mod 419). Thus, all of the existing entries are incorrectly placed, and must be moved to the
new index. Performing this operation on every entry in the HashMap is both computationally expensive
and unavoidable when resizing. While methods exist to reduce this impact, such as rehashing only part

of the HashMap at a time, they only spread out the operation’s cost over time, rather than eliminate it.

24

Thus, it is in the best interest of an implementation’s designer to set the values of initial capacity and
load factor such that, for the average use case, this occurs as infrequently as possible. This is one of
the main factors why at first glance it might seem that a default initial size of 16 might be too wasteful
(memory-wise) for the common use case, where the developer will store only a couple entries in the
HashMap: there has been a choice to trade some wasted memory in exchange for the chance that the
average use case will see at most one (and ideally none) resize.

In other use cases, however, this design choice becomes a downside. For example, microservice-
style applications often use HashMaps to store caches to avoid fetching the same immutable data mul-
tiple times through expensive requests to other services. In such situations, the number of entries is
expected to grow steadily to a large number throughout the application’s runtime, especially in the be-
ginning when the frequently-used data points haven’t yet been cached. In this example, resizes (and
consequently rehashes) are numerous, and the continuous doubling of the HashMap’s allocated space
can quickly lead to large amounts of wasted memory, especially given that such a caching approach is
often applied to several data types at once, and in multiple services. Use cases like this are a prime tar-
get for our optimization, especially since cache size growth tends to stabilize as the most common data
points get cached, allowing us to set the HashMap’s size to one that better matches the stabilized cache
size. Additionally, if the cache growth stabilization exists and is properly represented during profiling,
resizes may be prevented altogether, improving the application’s performance.

This kind of usage pattern cannot be inferred at compile time, and must be identified using data
obtained at runtime. Thus, this work’s optimization process occurs in two steps. During a program’s
first Native Image compilation, profiling instructions are injected into the program’s code, allowing for
the collection of usage information. After the program has been executed with an expected load/use
case, compilation is called again. In this second compilation, no profiling instructions are appended.
Rather, the data generated by the previously appended profiling instructions is analyzed, and from it,
data structures are checked whether optimization is viable, and it is applied if deemed positive. The
final, optimized, executable of the program is now ready for usage/deployment. The following sections

provide more details on the theory behind each of the aforementioned steps.

3.1 Tuning opportunity detection

Before any sort of optimization can be performed, we need to identify the relevant data structures to
be able to insert the relevant profiling instructions. While there are methods to detect the types of
data structures a program uses at runtime [18], doing so at compile-time allows for several advantages.
Firstly, said runtime method involves instrumenting a sample execution [18]. Given the kind of program

that stands to benefit most from our optimization are long-running, high-footprint applications such as

25

Listing 3.1: Java-style pseudocode for the tuning opportunity detection algorithm.
ArrayList<Integer> interestNodesIds = new ArrayList<>();

1

2

3 /+»Verifies graph contains structures that can be optimized according to
4 our rules, finds allocations of data structures of the appropriate type,
5 and checks against custom values.x*/

6 private void findOpportunities (StructuredGraph graph) {

7 if (matchTargetPackage (graph){

8 for (Node n : graph.getNodes ()){

9

if(n instanceof NewlInstanceNode) {
10 if (isHashMap (nin.className)) {
11 if (verifyValues (nin))
12 interestNodesIds.add (nin.id);
13 }
14 }
15 }
16 }
17 }

microservices, this profiling run will most likely take longer than the extra compilation time caused by
the analysis. The second benefit is accuracy: during compilation, the program’s source code is fully
available to us as an IR graph, allowing our identification of a data structure to be very accurate. While
Java’s dynamic class loading makes this approach quite difficult, this is negated by our use of Native
Image. As a third benefit, we can restrict our analysis to specific packages and implementations. This
allows us to, for example, exclude any HashMaps used in Java’s standard libraries, ensuring we do not
accidentally change their behavior or performance, maintaining optimization safety.

Detecting the relevant data structures without data flow or safety analysis is facilitated through the
use of a graph-based IR. Our algorithm for this consists of a simple traversal of the graph (provided it
matches our target package), where each NewInstanceNode (the node representing the allocation of a
new object) is verified against a whitelist of viable data structure types. While our scope for this work
only involves HashMaps, this allows for simple extension to other data structure types such as Arrays.

Valid tuning opportunities, then, consist of HashMaps allocated in developer-authored code, whose
parameters were not manually set to a custom value by the developer. We assume the developer that
sets such values has a good understanding of the logic behind them, and thus is targeting a specific use
case or system behavior. In these cases, we defer to the developer and do not modify their design.

Algorithm 3.1 details a pseudocode implementation of the opportunity detection and analysis steps
detailed above. It iterates O(n), n being the total of nodes in the system. Given the average program
contains comparatively few data structure allocations, and few of them are of the type considered for
tuning, the loop is expected to run in full very few times. After verifying that the IR belongs to a method
it is allowed to work on, and that the developer has not set custom values for the properties, the result

of the algorithm is a list of IDs for tuning candidate nodes that were found to be of the type suitable for

26

modification. This list is then fed to the next step: profiling.

3.2 Application Execution Profiling

With the unsuitable tuning candidates filtered out, it is now necessary to decide which data structures
it is beneficial to modify, and with what values. Since the objective is to modify generalist-tuned data
structures into ones more suitable for the program’s specific use case, it is crucial to determine what
that use case may be. However, this can hardly be done at compile-time, as program behavior (and thus
data structure usage) usually depends on inputs given to it during its start-up or mid-execution. Profiling
answers this conundrum, allowing us to attach our own code to the developer's and having it execute
with the program. We can then use it to extract data on the execution, from execution time down to the
utilization of individual data structures.

To determine the viability of a data structure’s modification, we require knowledge on the following

items:

* Initial capacity, load factor, resizes performed during execution, and allocated size. These are

necessary to calculate the size the structure occupies, and how much of it is available to be used;

« Number of elements contained, both at the end of execution and the maximum achieved. When
compared against the ones in the previous point, we can calculate the utilization of the structure,
and thus the unused, but allocated, space. This will be used to calculate whether it is preferable
to modify the initial size, load factor, or both, and what the new values must be to improve the

structure’s memory footprint;

 Average utilization/number of elements per access. With this metric, it is possible to determine
the structure’s usage patterns, both for use in more accurate optimization, and to avoid tuning
structures based on utilization spikes. These may not be indicative of average usage, or indicate
an unstable data structure, one where the number of elements fluctuates very strongly, leading to

potentially harmful or low-benefit tuning.

The list of tuning opportunities created in the analysis step, as detailed in Section 3.1, is now fed
to the algorithm that will attach the profiling instructions to the developer’s code. This algorithm goes
through the IR graph once, and attaches instructions when it encounters a relevant node. Relevant
nodes are determined by cross-referencing the node’s ID or, when the node represents a method, the
ID of the method’s target, against the list of tuning opportunity IDs. For allocations, the instructions entalil
the creation of a new entry in the database which holds all of the metrics detailed above, whereas for

methods they execute updates on said metrics. After all profiling instructions have been appended to the

27

IR graph, compilation proceeds as usual. These additional instructions have no bearing on the original
program’s logic, and are designed to have as little of a performance impact as possible.

With the executable generated, it must now be executed in order to gather the profiling data. It
is important that this execution mimics real-world usage as closely as possible, in order to provide
maximum accuracy on the data generated. Failure to do so might compromise the post-tuning program’s
results, with the algorithm tuning data structures for smaller quantities of data, as guided by the profiling
information it received, only for the real-world usage to be far higher, thus forcing resizes on the low-
utilization-tuned data structures. The opposite case will also yield subpar results, as the optimization
will leave space “on the table” which will not be used in real-world conditions. Ideally, the developer
would record real-world usage metrics from a production version of the application, and use those for
the profiling execution.

After the execution of the profiling-appended application, files containing the results from the execu-
tion are generated. When the compiler is once again called onto the source code, it will identify these
files and use the information within to inform the decisions regarding which, if any, tuning to implement
for each candidate data structure. Figure 3.1 demonstrates the entire process from the initial compi-

lation that inserts profiling code, the profiling execution, and the second compilation that produces the
final executable.

First) -
Profiled executable Optimized executable

Figure 3.1: Flow diagram of the process of obtaining an optimized executable through profiler-guided optimization.

Profiling
information

Second compilation
(optimization)

3.3 Data Structure Tuning

As the second compilation begins, the compiler will identify that profiling information exists for the target
code, and use it as input for the tuning algorithm. It is important that the source code not be changed
between the first and second compilations, both for reasons of safety (ensuring that all of the ids and
methods identified in previous steps correspond to their intended targets) and results (changes to the
code may result in different data structure utilization that invalidates previously obtained profiling results).
It is up to the developer to ensure this is the case, though the compiler takes an additional step to protect
against using outdated information by deleting the files containing the profiling results after the tuning
phase is complete. This forces the initial compilation and profiling process to be executed again when
tuning is once again necessary. Though our model requires two compilations to obtain optimization

results (one for the profiling step and another for the optimized code), we believe this to not be a problem

28

in real-world application, as often a new version of a program is prepared in development environments
while a production version runs concurrently in a user-facing environment and can simply be replaced in
the same way as any other service update.

As an optimization, data structure tuning offers some advantages when compared to other meth-
ods such as replacement. First and foremost, the scope of application is far larger. For replacement,
the main concern relates to safety and correctness: there are a myriad methods, such as Instance0f,
whose return would be changed in the modified program, altering the program’s correctness. In the
same way, the replacement data structure must allow for the same type of usage with the same perfor-
mance characteristics to not deteriorate performance compared to the program’s “unoptimized” state,
and creating a new implementation of a data structure that maintains functionality and performance
while consuming less memory is a daunting task. Additionally, there are numerous situations where
replacement is not feasible by design, one of them being service-type programs: if the data structure
is in some way "packaged”/serialized to be sent as a message/payload to another service, it cannot be
replaced as that would impact other services that we may not be able to modify. The same restriction
applies to inlining, as "wrapper” objects (which are often the targets for inlining) are often used to wrap
the contents of messages into a single object rather than sending a multitude of individual fields. Con-
trasting with these restrictions, tuning has, theoretically, a very wide scope: by not changing anything in
terms of type, functionality or existence of a data structure, almost every self-scaling data structure with
stable usage is a viable candidate for tuning, and in almost every such case there is a possibility for at

least a small improvement in footprint.

Table 3.2: Utilization and used space as a function of entries. Load (I) refers to how much of the allocated space
is being used, while utilization (u) denotes the proportion between entries and how much space is ef-
fectively usable (maximum number of entries before a resize is triggered). All values calculated using a
default load factor of 0.75 and default doubling resizing.

Max entries (e) 1500 1900 2300 2700 3000
Allocated space (S) 2048 4096 4096 4096 4096
Usable space (S,) 1535 3071 3071 3071 3071
Load (1) 73.24% 46.39% 56.15% 65.92% 73.24%
Utilization (w) 97.72% 61.87% 74.89% 87.92% 97.69%

Table 3.2 demonstrates an example of this "universality of opportunity” with regards to HashMaps,
noting possible memory savings in multiple situations. With a load factor of 0.75, a resize will occur
as soon as 75% of all slots are occupied. As such, at any given point, at least 25% of the HashMap’s
footprint is unoccupied.

There are 3 possible situations for a given size (S, represents the current allocated space, while

29

S.—1 denotes allocated space before the resize):

* e < S, (column 1): when the number of entries is lower than that of usable spaces, no resize has

yet happened. In this situation, however, at least 25% of allocated space is unused.

* Su—1 < e < S,-1 (column 2): the number of entries is sufficient to trigger a resize. However, it
is lower than the pre-resize allocated space, meaning that if the load factor had been larger, no
resize would have needed to occur. This is the most wasteful situation, as over half of the resized

HashMap now consists of memory that was allocated unnecessarily.

* S,_1 < e (column 3): since the number of entries exceeds the allocated space, a resize is manda-

tory. After the resize, however, this becomes equivalent to the first situation.

The following subsection will detail how each situation can be tackled to obtain memory savings, and

the challenges and requirements for successful optimization.

3.3.1 Tuning algorithm

Two things are required to successfully use our version of data structure tuning. Firstly, we must accu-
rately know the number of entries in the HashMap in standard/expected usage. Without this, we cannot
tune the data structure to its usage, and simply setting the load factor to 1 would only degrade HashMap
performance without any significant memory savings. While probability tells us all buckets should have
an equal chance to receive a key/value pair, that is often not the case. Setting it to 1 would fill up every
available bucket, practically guaranteeing collisions to happen. The second aspect is knowing how this
number evolves over the program’s runtime, as irregular usage may make the optimizations have a neg-
ative, rather than positive, effect. We can illustrate this by describing two ways to use a HashMap in a
real-world application:

» As a cache. In a cache scenario, information is expected to grow at a relatively linear and constant
pace. At first, the number of entries grows rapidly during the cache’s initial warmup phase, and
after some time stabilizes at a given number when all of the frequently-accessed data points have
been cached. Additionally, in a cache situation entries are seldom removed, but rather updated
or replaced if a new version of a particular data point exists. For our purposes, this tendency for
stability allows for very safe tuning as we can set, for example, a certain value as the new initial

size, and be confident it is unlikely to be exceeded;

» As a burstable resource tracker. In, for example, a ride-sharing application where available vehicles
are stored in a HashMap, with the vehicle’s grid square number as a key, and an object containing
their information (precise location, vehicle details, driver details) as the value. We can expect the

number of entries to vary frequently and strongly, decreasing sharply in times of high demand

30

(morning and afternoon rush hour), and growing equally sharply as the high demand period ends
and the service is able to finalize all of the requests. In such a situation, the high volatility can at
best prevent us from making any changes, or at worst cause “optimizations” to have the opposite
effect. Column 3 of Table 3.2 can help us numerically illustrate such a situation: with an average
entry number of 2300, we set the HashMap’s initial size to 3067 (maintaining the 0.75 load factor),
thereby reducing footprint by 25%. However, a peak of 2400 entries triggers a resize, doubling our
HashMap’s footprint to 6134, an increase of 50% compared to if we had made no changes to the

data structure.

The above two situations demonstrate why profiling using real-world input data is necessary, and the
importance of accurately calculating the values obtained from said profiling. During the second com-
pilation, once the profiling data is loaded and interpreted, it is used by the tuning decision algorithm to
formulate which changes are necessary to obtain maximum gains. The algorithm itself is quite straight-
forward, due to the optimization itself being relatively trivial to perform, and requiring very little in terms
of safety analysis. The modifications performed by the algorithm affect two properties of the HashMap:

load factor and initial size, changing one or both of the values to attempt to minimize unused space.

31

Listing 3.2: Java-style pseudocode for the tuning algorithm.
1 public void structureTuning (graph, profiledMethods) {

3 for (MapObject map: profiledMaps){

4 //Verifies map properties are default

5 if (map.maxEntries >= 12 && verifyDefaultValues()) {

6 //Ensures load is consistent and without major spikes

7 if (map.avgEntriesPerOp * 1.25 >= map.maxEntries) {

8 //Max load higher or equal to previous size, but within

9 //load factor of current size

10 if (map.maxEntries >= (map.allocatedSpace / 2)){

11 map.initialCap = round(map.maxEntries / map.loadFactor);

12 map.loadFactor = 0.8f;

13 modifyMapProperties (graph, map);

14 } else {

15 //Max load higher than previous real capacity, but

16 //lower than allocated size

17 int newUsableSpace = min(

18 max (Math.round (map.maxEntries = 1.05, map.maxEntries + 1)),
19 map.allocatedSpace / 2);

20 if (newUsableSpace == (map.allocatedSpace /2)){

21 map.initialCap = round (newUsableSpace / map.loadFactor);
22 map.loadFactor = 0.8f;

23 } else {

24 //New usable space is less than the previous allocated space.
25 map.loadFactor = newUsableSpace / (map.allocatedSpace / 2);
26 }

27 modifyMapProperties (graph, map);

28 }

29 }

30 }

31 }

2 }

3.3.2 Theoretical results

The theoretical footprint reduction for each method’s best and worst case is not hard to calculate in a

vacuum, and we have done so for each of the situations shown in Listing 3.2:

* S._1 < e < S,: The number of entries has exceeded the previous allocated space, and a resize
was unavoidable (line 10 of Listing 3.2). However, since resizes double the allocated number of
spaces, between 25 and 50% of currently allocated entries are unused. We can thus attempt to
reduce the space occupied by the HashMap post-resize. While a profiling execution is ideally close
to real usage, real-world usages will always vary by some degree. Simply setting the new initial
capacity to maxEntries + 1 and load factor to 1.0 would leave the optimized HashMap vulnerable
to the slightest variation in entries, potentially leading to footprint increases when compared to the
unoptimized version (Subsection 3.3.1’s second example demonstrates how such a situation might

happen). Thus, we calculate new values for initial capacity i. and load factor I; in the following

32

manner (lines 11 and 12 of Listing 3.2):

maxEntries

4
'~ default Iy (0.75) axEntries x 3 lp=08

With these parameters, the HashMap will be allocated with a size already fitted to its profiled load
(133% of the maximum number of entries). The slightly larger load factor gives our usable space
an increase of just over 6.6% relative to maxEntries, providing a margin for variation between the
profiled and real-world executions. Setting the initial capacity outright to its final value means a
footprint that is larger at startup/declaration, but lower once usage stabilizes. We find this to be
most fitting for applications such as the first example of Subsection 3.3.1, with fast initial growth
followed by stabilization. Additionally, this removal of resizing operations can provide a small per-
formance boost, ideally offsetting the slight performance deterioration from the increased load
factor. The best result for this optimization occurs when the number of entries is closest to the
pre-resize allocated space (e =~ S,_1), and the worst when it is closest to the current usable space

(e = S,), with the following improvements:

ef/ly e e Se-1 2

Best case (e ~ S,_1):

Se Iy %xS8. 075%X2XS.1 15xS81 3

e/lf (& Su Sa X lf
W =~ : ~ = ~ = =1
orst case (e = S,) S [xS S xS I xS
Thus, our best case scenario yields a footprint reduction of 33%, with the reduction asymptotically

nearing zero as e approaches S,,.

Su—1 < e < S,_1: the number of entries is sufficient to trigger a resize. However, it is lower than
the pre-resize allocated space, meaning that if the load factor had been larger, no resize would
have needed to occur. Thus, we want to change the parameters so that no resize is triggered. For

this, we calculate a new S,,_; with a 5% margin for variation (lines 17-19 of Listing 3.2):
Sy = min(mazx(e X 1.05,e 4+ 1), Sq—1)

The max ensures there is always at least one slot for margin, while the min ensures the new S, _;
does not exceed S,_;. If S,—1 = S,—1, we would have to set the load factor to 1. This would
greatly degrade HashMap performance, however, and as such we instead set the load factor and
initial capacity in the same way as in the previous case, with the optimization result being the
same as the best case of that situation (lines 20-22 of Listing 3.2). Outside of this edge case,
ly = Su—1/S.—1. As for the initial capacity, we can set it to S,_1 (eliminating resizes as described

above) or leave it at default (allowing for smoother footprint growth over runtime). We chose to

33

leave it at default to keep the footprint growth at early runtime closer to the unoptimized program.
Since this optimization prevents a resize (which doubles the allocated space), the improvement is

always (with exception to the aforementioned edge case) a footprint reduction of 50%.

- Allocated Space - Optimized allocated space

512
480
448
416 =

384 —

352 T

320
288
256

224 _

192 ,_/
160
128

96 T

Allocated space (units)
\

64

32

0

o 16 32 45 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304

Entries

Figure 3.2: Evolution of allocated space (S,), with (green) and without (red) our optimization as a function of the
number of entries in a HashMap (e). The optimized line contains two repeating "sections”: the first one
(e.g. e = [96..121]) demonstrates our prevention of a resize while avoiding a load factor of 1 (average
load factor for the entire graph is 0.827); while the second (e.g. e = [122..191]) "section” shows how we
reduce the impact of an unavoidable resize. S, has no unit, as this is a theoretical language-agnostic
simulation.

We have shown that our approach can yield a theoretical maximum HashMap footprint reduction of
50%. Unfortunately, the large number of factors in any given program makes it extremely difficult to

predict how our tuning will affect the program’s overall footprint. Some of the factors are:

* How much of the program’s footprint is data, and how much of said data is stored in structures
versus variables and other objects? Depending on purpose and design, programs may or may not
store large quantities of data. All else being equal, the amount of data stored in-memory by the
program directly affects the gains obtained by our optimization. Distributed systems, for example,
often exchange data through Data Transfer Objects (DTO). A microservice can receive a DTO,
store it in a variable and perform actions on it, then send it to another service or client. Throughout
the entirety of the exchange, all of the data contained in the object was not stored in any data

structure, and thus excluded from our optimization.

34

60

55

50

45

40

35

30

25

Optimization (%)

20

0 16 32 48 64 80 96 12 128 144 160 176 192 208 224 240 256 272 288 304

Entries

Figure 3.3: Theoretical HashMap footprint reduction as a function of the number of entries in a HashMap (e),
represented by the green line. As explained above, when a resize is inevitable, the value of our footprint
reduction linearly decreases as e grows towards S,,. On average, our optimization yields a theoretical
footprint reduction of 30%, represented by the blue line.

» Of the data structures, how many are of the type targeted by the algorithm? Our optimization
targets a small subset of all available data structure types. While these are very popular to use,
they nonetheless represent only a fraction of all possible structures. However, this work’s scope
can be extended in future works to encompass many or even all data structures that follow a

dynamic-resize approach to allocation.

» What kind of data is stored in the targeted data structures, and in what quantities? The amount
and type of data stored in a data structure can heavily impact how much our optimization is "felt”
in the overall footprint. In Java, HashMaps do not store the keys and values themselves, but only
references (pointers) to them. Thus, the space occupied by a HashMap of size 32 is only 32
(entries) x 32/64(-bit) (plus all of the headers and object information for the HashMap object), and
our optimization reducing its size in half represents a saving of 16 pointer sizes, rather than 16 of

the objects and keys it stores.

In practical terms, this means that we cannot make predictions for overall footprint reduction, as the
results can vary drastically per the program’s design and usage. The effect of this is shown in Chapter 5,

where we provide a more detailed analysis of how our optimizations change the program’s footprint.

35

36

Implementation

Contents
4.1 Analysis and opportunitydetection. 0 i i i a1
42 Profiling i e e e e e e e e e e 43
43 TUNING . . - c o ot e 46

37

38

With regards to implementation, HashMaps in the Java language were the chosen data structures
and language. Though some of the most complex data structures to tackle for optimization research,
they are very relevant in today’s programming. Java is an industry standard language, and as such
allows for our work to achieve real world results that can be directly applied to current industry practices
and use cases, rather than using a demo language with no direct real-world application. In addition,
HashMaps are among the most common data structures, ensuring our optimizations apply to a wide

range of programs, in contrast with those which target specific applications or workflows.

Oracle’s GraalVM greatly facilitates both the development and execution of our algorithms, as it
possesses a very complete Intermediate Representation, with an APl and tools available to facilitate
its viewing, interpretation and usage. As such, this IR allows us to more easily analyse the code and
implement our tuning strategy, as we can integrate it into the remaining compiler optimizations performed

by the compiler.

Additionally, the use of Native Image allows for something uncommon in Java: ahead-of-time com-
pilation, compiling the whole program at once and creating an executable binary, much as other non-
interpreted languages such as C do. Besides the faster startup and lower memory footprint this brings,
it solves our challenge with class loading. Since the program is compiled ahead-of-time, all classes it
uses are also loaded at once. This ensures that we will not have to deal with conflicts between the Java
HashMap implementation and any other classes that may try to override it after we have performed our
optimization. In addition, Native Image contains a multitude of tools for IR analysis and traversal, thus
removing the need to develop a custom static analysis tool. During Native Image compilation, after the
initial IR is generated, it is then modified through a number of phases. These phases serve to further
the compilation process, through actions such as lowering (separating a given node, such as a method
call, into several more low-level nodes, representing the contents of the called function), and to enact the
numerous optimizations the compiler performs, such as constant propagation, loop peeling and unrolling

and function inlining.

Our optimization was implemented as a new phase in this process rather than as an addition to
an existing one. The main advantage of this is increased control and freedom for changes, since we
don’t have to ensure whatever operations we perform on the IR interfere with other changes in the same
phase. In addition, this allows us to easily turn on or off individual features of our process, or even the
entire optimization, using command-line options on the compiler executable. Our phase in inserted right
after the first compiler phase, which generates the IR graph from the bytecode. At this point, the IR most
closely represents the source code, as no operations such as inlining have yet to occur. Not only does
this increase the accuracy of our analysis (calls that may be redundant in the unmodified code might be
important for us to detect), but also the performance of the profiled execution. Placing our algorithm at

this stage has several advantages:

39

» The lowering level of the profiling code, inserted as foreign call nodes (representing calls to our
methods), matches that of the other nodes in the graph, thus allowing us to insert only a single call
node rather than having to create a sub-graph of nodes to match the level of the graph at a later

phase.

» Tuning is greatly facilitated as well, as replacing a given call entails changing only one node rather

than a group of nodes.

+ After our operations, compilation proceeds as standard, allowing all of the Native Image optimiza-
tions to take place. Thus, not only does the source code receive the same optimizations it would
have without our intervention, but our code is also subject to them, potentially increasing its per-

formance compared to if it were introduced at a later phase.

A unique and independent IR is generated for each method of the target program. While this ap-
proach has some downsides (none of them of relevant to our work), it also has a significant advantage
for us: since each method gets its own IR graph, we can easily restrict our optimization to apply to some
methods and not others. In practice, this means we can modify the code written by the developer while
leaving the standard Java implementation, along with any external libraries the developer chooses to
use, untouched by our algorithm. While this means we leave some improvement “on the table”, it also
ensures we don'’t interfere with the performance and functionality "advertised” by these packages. In
practice, we refuse to modify any code that isn’t provided by the developer.

Placing our work at a later phase would also make analysis far more difficult, as demonstrated in
Figure 4.1. The IR graph in the early compilation stages closely resembles source code. Here, the new
HashMap<>(16, 0.75f) call is represented as two nodes: a NewInstanceNode, containing information
on the assignment and type of the data structure, and an InvokeWithExceptionNode, the information
of which contains the setters for the HashMap’s initial capacity, load factor, and other information for the
structure’s creation and allocation. To identify a new data structure has been declared, we need only
look for occurrences of NewInstanceNode, and should we want to change this HashMap’s initial capac-
ity and load factor values, we could just change the values stored in the InvokeWithExceptionNode’s
arguments. Comparing this to the same code at the time of phase 45 demonstrates the impact phase
placement has on our work’s complexity. At this phase, to identify a new structure was we would have
to attempt to fully or partially match the graph to corresponding patterns. Besides being a far more
computationally expensive process, it would introduce inaccuracy to our analysis, as the optimizations
performed by previous phases could lead us to not find all relevant data structures, or "detect” more data
structures than there really are. The complexity of all other operations and their detection/modification
increases proportionally as well. In essence, the difference in representation complexity between these

two phases can be compared to the difference between Java source code and bytecode.

40

382 MemoryAnchor

|682 MemoryAnchor| | 376 ForeignCall#throwNewStackOverflowError

-

628 read#Descriptor.AllocationTop

2 New HashMap

630 read#Descriptor.AllocationEnd

| 3 Invoke!#HashMap.<init= |

)

10 Begin

| 637 write¥Descriptor.AllocationTop |

652 PrefetchAllocate

‘ 16 Invoke'#HashMap put ‘ 667 Write#INIT_LOCATION |

- Y —

15 BoxNode$AllocatingBox

(a) Phase 0 (b) Phase 45

Figure 4.1: The same operation (instantiating a new HashMap and initializing the property fields) as represented af-
ter phase 0, and after phase 45. Note that some edges and floating nodes were removed for readability,
and that the init method’s representation in phase 45 is not fully shown in the image in the interest of
space on the page.

4.1 Analysis and opportunity detection

Our detection algorithm is a direct implementation of the one shown in Listing 3.1. The first step is to
verify whether the method is one we want to attempt to modify. Since each method gets its own IR
graph, and the StructuredGraph object contains information such as the fully qualified name of the
method it refers to, we can simply match it against a whitelist of acceptable methods/packages by using
regular expressions. A whitelisting approach was chosen over a blacklisting one to prioritize guarantee-
ing compatibility/immutability of libraries and other implementations not authored by the developer. The
next step is to verify the existence of a file containing information from a previous profiling run. This
file is created by our profiling code, injected into the target program, and is deleted after the information
it contains is used for the second compilation. Through deleting the file, we introduce some measure
of protection against profiling data of previous code versions being used to inform optimizations of new

versions. While a more robust safety "net” could have been implemented, we did not prioritize doing so

41

for this work. If no profiling data is found, we can move on to detecting data structures compatible with

our optimization, and inserting the respective profiling instructions. Given the direct representation of

the IR at our phase, the analysis process is very straightforward: iterate through all nodes of the graph

(which is relatively compact due to not having yet been unraveled (lowered) like the ones present in the

latter phases), verify which NewInstanceNode nodes represent a desired data structure type (once again

through a whitelist approach). The IDs of all such nodes are collected, and passed on to the profiling

section.

Listing 4.1: Phase declaration and main entry point for our optimization. Some variable declarations were omitted

20

21

22

23

24

25

26

for readability.

public class DataStructReplPhase extends Phase {

@Override
protected void run(StructuredGraph graph) {
String dataPath = "ProfilingData/DataStructProfilingInfo.txt";

File instancesFile = new File(dataPath);

if (Pattern.matches (fileHandler.generateRegexPackageName (packageName),
graph.method () .getDeclaringClass () .getName ())) {
//Check whether profiling data exists.
if (!instancesFile.exists()) {
//No profiling data. Will try to find tuning candidates
//and append profiling instructions
ArrayList<String> safeNodesIds =
analysisHandler.findCandidateNodes (graph, regexPackageName) ;
profilingHandler.appendProfilerInfo (graph, safeNodesIds,
regexPackageName) ;
} else {
Map<Integer, ArrayList<MapObject>> profiledMethods =
fileHandler.readProfilingData (instancesFile);
//Tuning main algorithm

tuningHandler.structureTuning (graph, profiledMethods);

Our work targets the HashMap family of data structures, namely the following implementations and

42

interfaces: Map, AbstractMap, HashMap, ConcurrentMap, ConcurrentHashMap. While these are dis-
tinct data structures NewInstanceNode nodes represent all object allocation operations, regardless of the
object’s type, which is stored in the NewInstanceNode’s properties. Methods that interact with the data
structure are stored as InvokeWithExcceptionNode, and also contain information on the type of object
the interaction with which they represent. This allows for straightforward enlargement of the scope of our
work to encompass many different types of data structures, should we or other future researches desire
to do so. In theory, our work’s general principles are compatible with all data structure that follow similar
resize-style behaviors for dynamic sizing. On the implementation side, the work is extensive but reason-
ably simple: modify detection to include these new structures, obtain information on their workings and
resizing policy, then add profiling methods to obtain data which will be used to inform changes to the

structure’s scaling factors (ones that play similar roles to the load factor and initial capacity in HashMaps.

4.2 Profiling

The first sweep of the IR graph detects all nodes representing HashMap declarations. Once this list
has been created, a second iteration over the graph is performed, this time to insert profiling instruc-
tions. Placing these two steps in separate sweeps allows us to ensure all new instances have been
accounted for and can be matched against to verify the profiling instructions are inserted in the correct
place. The algorithm responsible iterates a single time through the graph’s nodes, searching for spe-
cific nodes. When such a node is found, and the ID of the node or the node’s target (if a method call)
corresponds to one of the IDs received from the analysis step, the appropriate instructions are inserted.
A ForeignCallNode is inserted into the IR graph, containing a reference to the profiling function to be
executed, and arguments to it if necessary. These arguments contain the structure’s ID, method and
package (in a hashed format), and may also include the HashMap’s load factor and initial capacity values.
Since we append entire functions and data structures into the compiled code, they behave exactly as if
they were in the source code since the beginning. In practice, this means we can call methods directly
onto the profiled data structures, such as HashMap.size (), which is very useful for accurate profiling, as
we discuss further in this section.

IR graphs generated by Native Image are deterministic (two separate compilations of the same
source code will generate equal graphs). This determinism isn’t restricted only to shape, but also to
the IDs of the nodes generated. The same NewInstanceNode will always have the same ID in all compi-
lations (provided the source code does not change) While this consistency is greatly appreciated, it also
creates some possibilities for problems: since node IDs are unique only in the context of their respective
graph (two graphs representing distinct methods will have nodes (which may be entirely different) with

the same ID). For the purposes of this work, this necessitates tracking not only the IDs of nodes we

43

interact with, but also distinguishing which graph they belong to.

Two node types are considered: NewInstanceNode (representing the structure’s declaration) and
InvokeWithExceptionNode (containing calls to the structure’s methods, such as put). Initialization in-
structions are appended to the NewInstanceNode that create a new data entry for the structure in the
profiling database, which takes the form of two instances of ConcurrentHashMap in nested form. This is
necessary for one reason: unlike the IR graphs during compilation, the profiling database is not unique
for each class or method that contains a HashMap. Rather, the database is added and declared at the
application’s entry point, and shared between all profiling methods. In practice, we effectively insert the

following call into the application’s main class:

Listing 4.2: Declaration and allocation of the profiling information "database”. Allocation of the nested Map entries

occurs on an as-needed basis whenever the target HashMap is first accessed.

1 Map<Integer, Map<Integer, MapCalculator>> methodProfilingMap

2 = new ConcurrentHashMap<>();

This database, implemented as a ConcurrentHashMap, maps a set of MapCalculator objects (one for
each HashMap being profiled, paired to its IR node ID as key) to a HashCode generated from the names
of the package and method the HashMap was declared in. It is important that the IR node ID is kept
throughout profiling, as it will later inform the tuning algorithm (the input of which is the same IR graph as
was used for analysis and detection) as to which structure is to be modified. The MapCalculator object
(shown in Listing 4.3) contains the values of all the metrics (as enumerated in Section 3.2) gathered
throughout profiling, and performs the necessary calculations to ready the data for analysis by the tuning
decision algorithm.

InvokeWithExceptionNode is used in the IR to represent all method calls onto the HashMap, and thus
is the only other node type we append profiling instructions to. This node’s properties contain the method
target’s ID, the method name, and the arguments passed to it. Depending on the method, we append
different instructions immediately before or after the node in the IR control flow. Some methods, namely
put, remove, clear and init, have custom profiling instructions that update the relevant metrics in the
MapCalculator object. All other metrics use the same profiling function, which accesses the structure’s
size method at runtime, and updates the metrics accordingly. The necessity to use the live structure’s
size property rather than manually alter the metric values on each method call is precipitated by the
existence of methods such as putIfAbsent (key, value), which inserts a value into the map if an entry
with the key doesn’t already exist. Given this method’s outcome depends on runtime data, intercepting
the call and predicting its outcome would prove too computationally expensive and complex to program,
and thus it is easier to retrieve the structure’s size after the method completes. While there may be a

loss of accuracy in the profiling data, this deviation will not be statistically significant given how frequently

44

the metrics are updated with the structure’s true size.

Listing 4.3: MapCalculator object, which stores all of our profiling information about a given HashMap. In the

interest of space, the methods are presented in interface form, and getters/setters removed.

1 public static class MapCalculator {

3 private int entries;

4 private int maxEntries;

5 private int initialCap;

6 private int resizes=0;

7 private float loadFactor;

8 private int average = 0;

9 private Queue<Integer> history = new LinkedList<>();

11 public void update (boolean addition);

12 public void update (int size);

13 public void updateAverage();

14 public void mapClear () ;

15 public void checkResize();

16 public double getAllocatedSpace();

17 public double getUtilization()

18 public String export (int number, int mapId, int methodHash) ;
19}

Throughout execution, our profiling methods collect a multitude of metrics about each HashMap, which
are used to determine how the data structure is used, whether we should modify it, and what values to
use in the modification. As shown in Listing 4.3, we keep track of the number of entries the HashMap
holds at any given time, along with the all-time maximum number of entries. In conjunction with the
average number of entries, we are able to track not only the number of entries, but also its evolution
throughout the execution. By comparing the average, final and peak values, we can ascertain whether
the HashMap’s usage profile is stable and without harsh entry fluctuations. In addition, a short-term first-
in-first-out (FIFO) queue holds the last 10 values of entries, enabling a more accurate calculation of
averages and evolution for small HashMaps where normal averages would not have time to stabilize

and present a representative value.

In addition to the previously defined profiling methods, another instruction set is appended as a shut-
down hook to the compiled program. These instructions will run whenever the program exits (gracefully

or not), and are responsible for aggregating all the data collected during profiling, formatting it and ex-

45

porting to a file, which will be read upon the next time the compiler is executed, supplying the tuning
algorithm with all of the collected profiling data. Passing this information to the compiler in this indirect
way is necessary due to the compiler not actively running during profiling. Additionally, this ensures the
metrics passed are up-to-date and final. Since Java is a cross-platform language, we chose an equally
cross-platform file type: the humble .txt, since it is a universally recognized file type independent of
operating system or encoding. There are other data objects we could have chosen, such as JSON, but
the universality of . txt, along with the added complexity of introducing/importing JSON parsing libraries
into the source code, led us to reject those more advanced options.

The information contained in the file is exported through simple string concatenation and stan-
dard Java file writing, and loaded by the compiler using regular expressions and simple manually-
implemented parsing. While overall simple, this approach is more than sufficient to store and recover

the data we need while maintaining universal OS compatibility.

4.3 Tuning

Upon the start of our phase in the compilation process, we verify whether the file containing profiling
data for the program exists. If it does not, safety analysis and profiling injection occurs as described
previously. However, if such a file exists, the algorithm assumes it to be the correct one, reads it and uses
the information for tuning. The data imported from the file is regenerated into a collection of MapObjects,
which besides containing all of the gathered metrics corresponding to a given data structure, later also
represents and stores the optimized load factor and initial capacity values. This profile-or-tune approach
was implemented both to avoid simultaneous injection of profiling and structure modification, and to
place both operations at the same phase of the compilation process, to take advantage of the possibilities
enumerated in Section 4.1.

After all of the data contained in the file is read and processed, it is stored in a data structure, the
layout of which is almost equal to the one presented in Listing 4.2, with the difference being it uses the
previously explained MapObject objects, rather than MapCalculators from profiling. The difference be-
tween the two centers around MapObjects not having to store all of the fields that MapCalculator does,
and not needing all of the calculation methods the latter possesses. By design, each Native Image
phase is executed independently and sequentially per method graph, and as such we cannot communi-
cate between different instances of our phase which methods were already evaluated for tuning. While
we could implement modifying the information file to remove the data of already optimized methods, this
would have introduced a large quantity of complexity and additional failure points while providing a very
small boost in terms of time and memory taken up by the optimization phase. As such, every time the

phase runs it loads all (though this dataset is small for even real-world microservices such as Micronaut)

46

profiling data, even that pertaining to methods other than the one currently represented by the graph.

Having finished recovering the data, we iterate over the graph in search of the relevant nodes, in
particular InvokeWithExceptionNodes whose method call is the HashMap.<init> method. There are
multiple variants of this method, differing by their number and type of arguments. Of interest to us is
only one of them, being the same one we look for during the profiling portion, HashMap.<init>(int
initialCapacity, float loadFactor). This method, unlike something like put, is not explicitly called
by the developer. Rather, it is implicitly called whenever the developer specifies these values during

HashMap allocation.

Listing 4.4: Implicit calling of the HashMap.<init> method.

1 HashMap<String, Integer> cityPopulations = new HashMap<>();

2 /*K and V types are inferred from the ones set during declaration of the
3 cityPopulations variable, and the default values for initial capacity

4 and load factor are used. <init> is not implicitly called, as there is

5 no need to do so.x*/

7 HashMap<String, Integer> cityPopulations = new HashMap<> (16, 0.75f);

8 /*K and V types are inferred from the ones set during declaration of the

9 cityPopulations variable, but values for initial capacity and load factor
10 have been specified by the developer. Even if they are the default falues,

1 <init> is implicitly called due to them having been specified.x*/

InvokeWithExceptionNodes representing calls to the HashMap.<init> method are our main interest
for tuning purposes. They contain the initial capacity and load factor values to be set in the HashMap,
and additionally store the ID of the NewInstanceNode that represents the HashMap’s variable declaration
and assignment. The information contained in this node is all we need to change to tune the data
structure with our optimized values. However, creating such a node and inserting it into the graph in
the right place if it doesn’t already exist is a relatively complex operation to implement. Due to time
restrictions, we were not able to do so. As such, the source code must specify the default values in the
constructor (as exemplified in the second line of Listing 4.4) for our optimization to work. While this may
seem at first to necessitate the developer changing their code to take advantage of our optimization (in
a similar manner to the developer annotations described by Bruno et al. [4], this need not be the case.
Using a basic text replacer on the source code (for cases when that is available), or using a bytecode
manipulation tool such as Javassist [26] is sufficient to eliminate the need for the developer to change

anything in their code.

Having found an InvokeWithExceptionNode of the correct method, ID, values and package/method

47

name, we use the corresponding values stored in the profiling information to calculate which tuning
approach we will take, and the values we need to change to implement it. In this regard, nothing has
changed from the theoretical implementation detailed in Section 3.3, apart from the aforementioned
safety validation to ensure we are modifying the correct node from the correct graph. Listing 4.5 demon-
strates how our approach performs minimal changes to the developer’s code, only changing the argu-
ments for the implicit HashMap.<init> call. In this example, we have determined the maximum number
of entries to be 200. Given the previous size for the HashMap was 256, we can prevent a resize from oc-
curring, yielding a footprint reduction of 50%. As stated in Section 3.3, we elect to not change the initial
capacity in this scenario, allowing the HashMap to grow throughout the execution rather than having it

start already with its final size.

Listing 4.5: Original and tuned calls for the allocation of a new HashMap object.

1 /*Code as written by the developerx*/

2 HashMap<String, Integer> cityPopulations = new HashMap<>();

5 /*Allocation with tuned load factor as calculated by our algorithm.
6 Both arguments must be included in the call, even if one of them is
7 unchanged from the default value.sx/

8 HashMap<String, Integer> cityPopulations = new HashMap<> (16, 0.8203125f);

No further changes to the node are required in terms of properties, as the control flow and remaining
references remain unchanged and valid. This continuity both helps with debugging, and minimizes the
risk of unwanted behavior or bugs being introduced into the IR or compilation process.

After the compilation process finishes, the file containing the profiling metrics is deleted. This was
implemented as a security measure to provide a certain amount of protection against situations where
the program’s source code was modified and the metrics from a previous version used to perform tuning
without correct profiling being done. The file’s deletion forces a repeat of the compilation and profiling
steps. Other security measures such as node type and id matching were also implemented. This is,
however, not a perfect solution, as it only prevents the reuse of profiling data, rather than first use upon
a modified source code. A proper code versioning/graph hash comparison functionality was designed,
but unable to be implemented due to time restraints. Thus, it falls upon the developer to ensure correct

utilization of the tool to avoid code mismatches.

48

Evaluation

Contents
51 Methodology . - - . . . o i i i it e s e e e e e e e e e e e e s 51
5.2 ResUlts i i i it i it it e it et e e e e e e e e e e e e e e 52

49

50

This Chapter is dedicated to evaluating the system, and determining under which scenarios we obtain
footprint and performance benefits. Besides presenting data points demonstrating our optimization’s
impact, we will perform some analysis on said data points and outline the conclusions that can be drawn

from them.

5.1 Methodology

All testing was performed on a system running Manjaro Linux, kernel 5.15.85-1, equipped with an i5-
8600K CPU, overclocked to 5.0GHz all-core and 16Gb of 2400MHz DDR4 RAM. Background and fore-
ground applications were limited to a minimum, and each test execution was performed a minimum of
three times, discarding extreme outliers. For each benchmark, the program was compiled in its standard
form (using javac or mvn as defined by the authors), then an executable was compiled once using Native
Image with all features related to this work disabled (referred to as vanilla). This represents our base
(unoptimized) program. Memory usage was measured using tstime [27], a C-based non-polling tool
that uses the taskstructs API of the Linux kernel to obtain the high-water RSS (Resident Set Size)
usage of the program. The same tool also reports process time with values for the real, user and system
time, and the last value was used to monitor the performance impact of our optimizations, as it effectively
measures the CPU time taken up by the program and is as such the most consistent. The process for

executing a benchmark or series of benchmarks is as follows:

1. Remove all compilation artifacts and profiling data from the previous run.

2. Run the vanilla Native Image executable under tstime, obtaining the unoptimized RSS. Argu-
ments/usage of the program is the same as the profiling and optimized executions of the exe-

cutable.

3. Perform the first compilation of the program with our modified Native Image, appending profiling

instructions.
4. Run the profiled Native Image executable to generate profiling data.

5. Perform the second compilation of the program with our modified Native Image, using the profiling

data generated in the previous step to perform data structure tuning.
6. Run the optimized Native Image executable under tstime, obtaining the optimized RSS.

7. Compare values to previous runs if applicable to filter outliers, and record results.

The main focus of our testing was a custom micro-benchmark, containing a single HashMap<Integer,

Integer>, inserting a certain number of entries (set by a command line argument) with a sequential key

51

and randomly calculated value, printing afterwards the number of entries in the HashMap. The number
of entries, random values and printing were implemented to prevent the compiler from optimizing the
program further though methods such as inlining or loop unraveling. Two sequences of values were
used with this micro-benchmark, based on the theoretical best (e = S,_1 x 0.8) and worst (e = S,_1 + 1)
case scenarios detailed in Subsection 3.3.2.

In addition, we used the Shopcart Micronaut-based microservice, to test the compatibility and capa-
bility of our optimization to work on programs representative of real-world use cases. Like our micro-
benchmark, the measurements were taken with tstime, while using the wrk2 [28] tool to send several

thousand HTTP requests to the service.

5.2 Resulis

On average, our profiling-step Native Image compilation of our custom micro-benchmark took 17.180
seconds and the optimization-step 17.468 seconds, as compared to the average of 17.168 seconds
for the vanilla Native Image. These results demonstrate that our added phase has very minimal effect
on individual compilation time. However, our process requires two Native Image compilations and one
profiling run. Taking this into account, our total time until an optimized executable is produced repre-
sents an increase of, at least, 100% (plus the variable profiling time) in source-to-executable time when
compared to the vanilla compilation. However, we do not believe this to be a significant downside of our
optimization due to it being an increase in ahead-of-time compilation time. User-facing applications are
not generally compiled on the user's computer, but rather distributed as pre-packaged binaries where
the user downloads the one matching their system’s architecture. Similarly, cloud applications are not
usually deployed in such a way that the application’s current version is unavailable while the new ver-
sion is being compiled/built. Additionally, all profiler-guided optimizations (PGO) require two compilation
rounds, and many are already in use in deployment pipelines. Our optimization can be integrated into
existing PGO compilation rounds, leading to a minimal overhead from adding it to the process. As such,
we believe the increased compilation time to not be a significant factor in the vast majority of cases.

As previously stated, for our micro-benchmark we tested two cases, representing best and worse
case scenarios. In the best case scenario we observed a large spike in footprint reduction for the last
two test values, with the next increment (not present in the table) returning to a more "normal” value
of 1.6%. Though we find ourselves unable to explain the reason for this spike, it has been consistent
through numerous executions, and as such was included as a valid result. Assuming a more “fitting”
reduction of 3%, the average footprint reduction would be 2.091%, 40.8% better than the reduction
obtained for the worst case scenario. This proportion conforms to our theoretical results, where the best

case results in a 50% reduction, and a value of 33% for the worst case.

52

Table 5.1: Best case results, e = S,—1 x 0.8. All memory values are in kb. Average RSS reduction: 3,950%.

Entries (e) Vanilla RSS Tuned RSS Optimization (%) Sa—_1 Sa—1 Resizes
26 7871 7735 1.727 32 24 1
51 7941 7727 2,694 64 48 2
102 7869 7616 3,215 128 96 3
205 7853 7768 1,082 256 192 4
410 7819 7863 -0,562 512 384 5
819 8057 7844 2,643 1024 768 6
1638 8292 8129 1,965 2048 1536 7
3277 8649 8556 1,075 4096 3072 8
6554 9165 9119 0,501 8192 6144 9
13107 10379 10063 3,044 16384 12288 10
26214 12876 12669 1,607 32768 24576 11
52429 18159 17660 2,747 65536 49152 12
104858 28916 27760 3,997 131072 98304 13
209715 50201 48096 4,193 262144 196608 14
419430 97736 97712 0,024 524288 393216 15
838861 180079 180156 -0,042 1048576 786432 16
1677722 366256 352192 3,839 2097152 1572864 17
3355443 698740 488826 30,041 4194304 3145728 18
6710886 1982016 1758793 11,262 8388608 6291456 19

As predicted in our conclusions regarding the theoretical results discussed in Subsection 3.3.2, the
real values measured are an order of magnitude lower than the ones predicted. While most of the data
in a program resides in data structures, most of their footprint comes from the data they contain, not
the structure itself (which is mostly composed of 32 or 64-bit pointers). In Java 8, a single empty string
takes up 32 bytes. A single key and value pair of empty strings take up 64 bytes, or the same as 8
64-bit pointers, 25% of the 32 pointers allocated for entries on a default map of 16. As such, while we
can measurably reduce the space occupied by the HashMap itself, the improvement in terms of overall
program footprint may prove small. This can be exemplified by comparing two lines from the best case
run of the micro-benchmark: at 51 entries, the entire program occupied 7941 kb, growing to 8057 kb at
819 entries. Despite the number of entries being around 16 times larger, the program’s footprint only
grew by 1.46%. Only at higher numbers of entries do we see the program’s footprint growing (almost
doubling) at a similar rate to the number of entries, as in those cases the sheer quantity of data is
significant enough in proportion to the non-data portion of the footprint. Despite this, we were still able
to obtain measurable footprint improvements in most test cases, and appending profiling instructions
to the optimized program shows the tuning algorithm was successful in improving footprint of individual
structures and preventing resizes where possible.

In addition to memory footprint, we also measured execution time for both micro-benchmark scenar-

ios, through the system time value reported by tstime. For low numbers of entries, the micro-benchmark

53

Table 5.2: Worst case results, e = S,—1 + 1. All memory values are in kb. Average RSS reduction: 1,486%.

Entries (e) Vanilla RSS Tuned RSS Optimization (%) Sa_1 Sa—1 Resizes
17 7260 7240 0,275 16 12 0
33 7943 7788 1,951 32 24 1
65 7752 7632 1,547 64 48 2
129 8056 7788 3,326 128 96 3
257 7636 7480 2,042 256 192 4
513 7480 7344 1,818 512 384 5
1025 8036 7736 3,733 1024 768 6
2049 8456 8068 4,588 2048 1536 7
4097 7988 7852 1,702 4096 3072 8
8193 9496 9396 1,053 8192 6144 9
16385 9312 9200 1,202 16384 12288 10
32769 11676 11312 3,117 32768 24576 11
65537 21528 21008 2,415 65536 49152 12
131073 36156 35968 0,519 131072 98304 13
262145 64796 64664 0,203 262144 196608 14
524289 99268 99200 0,068 524288 393216 15
1048577 191252 191176 0,039 1048576 786432 16
2097153 435272 434944 0,075 2097152 1572864 17
4194305 862532 862280 0,029 4194304 3145728 18
8388609 1653788 1653492 0,017 8388608 6291456 19

ran so quickly that tstime reported a value of either 0 or 3 milliseconds for both optimized and unopti-
mized executables. As such, we deem the results for low numbers of entries to be inconclusive as the
variance is extremely small. However, execution time starts to grow exponentially once the number of
entries reaches 6 digits, giving us measurably different and consistent times. Figure 5.1 shows both
optimized and unoptimized execution times for the worst case micro-benchmark series, as this series
reaches higher numbers of entries and as such produces more consistent results. Given that only at
65537 entries did we consistently stop obtaining 0 milliseconds on either one of the executions, we
chose to calculate our improvements only from this value forwards, as the previous ones were within
reporting margin of error. As such, we obtained a median time reduction of 46.178%. While we did
not explicitly target performance improvements, our optimization either eliminates or heavily reduces the
number of resize operations, which are not only costly but also increase in cost in the same way that
footprint increases (since each resize doubles the HashMap's size, there are twice as many allocation and
rehashing operations to perform). However, this performance improvement scales heavily with the num-
ber of resizes, and as such only obtains significant improvements for applications with large amounts
of resize operations (be it through many smaller HashMaps, or a singular massive one). These results
demonstrate that, at the very least, our optimizations incur no noticeable performance penalties as a

trade-off for the footprint reduction in the use cases we tested.

54

® Execution time (unoptimized) ® Execution time (optimized)

700
650
600
550
500
450
400
350
300

250

System time (ms)

200

150

100

50

Entries

Figure 5.1: Comparison of optimized and unoptimized execution time for our micro-benchmark.

Additional testing was performed on the Micronaut-based Shopcart application, where we observed
average RSS values of 162701 kb for the base version, and 159028 kb for the tuned execution, translat-
ing to an average footprint reduction of 2.258%. These results are consistent with the ones we obtained
with the custom micro-benchmark, and confirm our solution’s applicability outside of it. Micronaut gen-
erates a large amount of code during building, code over which the developer has no control over. By
successfully analysing, profiling and tuning this application’s automatically-generated data structures,
we prove our optimization’s ability to be applied onto real-world programs with large quantities of user
and software-generated classes and data structures.

As such, we consider the results obtained positive, and the topic worthy of further research, espe-
cially for the enterprise world, given how a 2-4% footprint reduction per program/instance can quickly

compound into significant memory savings in the context of distributed or serverless applications.

55

56

Conclusion

Contents
6.1 CoNCIUSIONS i i it i it it it s s e e e e e e e e e, 59
6.2 Future Work i i i it it e s e e e e e s st e et e et e e 59

57

58

6.1 Conclusions

In this work we propose a new data structure optimization algorithm based on profiling-guided tuning
for use with GraalVM Native Image, capable of memory footprint savings of up to 30%. Along with the
algorithm itself, we believe our major contribution to be its universality through integration with Native
Image. Given it makes no changes to the structure, class, methods or any other sensitive characteristics
of HashMaps, our work is safe to use for almost all Java applications. Additionally, this universality in
approach and focus on a "never-worse” heuristic in regards to optimization enable it to be integrated
into standard compilation workflows without fear of potentially compromising performance or increasing
footprint. While Native Image is not as popular as most JIT JVMs, reducing our reach, we believe our
work has great synergy with AOT compilation, as Native Image’s mission to extract as much performance
out of Java as possible matches our approach. In addition, growing adoption of Native Image and pursuit
of performance gains allow us a positive outlook on the impact of this work on Java optimization and

use.

6.2 Future Work

While our work shows very promising results, throughout the development and evaluation process we
have identified several possibilities for improvement of our existing methods, and expansion towards
tuning of other data structures. Among these improvement opportunities, enhanced profiling stands out
as the most important one. Currently, we do not have custom profiling code for all HashMap methods, but
only <init>, put, remove and clear. All other methods that access the HashMap are profiled with the
same instructions that take advantage of how well Native Image allows us to integrate our profiling code
into the developer’s, making ample use of the HashMap.size method to effectively "poll” the HashMap
about how many entries it possesses after the profiled method finishes. While this is an accurate ap-
proach, especially for long-runtime applications where eventual profiling miscalculations get "smoothed
out” by the number of accesses, we feel more accurate profiling could help us perform tuning that is
even closer to the application’s usage patterns, further reducing footprint. Additionally, all of these calls
to size incur a performance overhead on the profiled execution, ever slightly increasing the time it takes
to obtain an optimized executable. As a future improvement, we would like to increase the granularity
of our profiling, creating custom profiling code for more methods. The second improvement opportunity
relates to performance: increasing the load factor may lead to a decrease in performance by increasing
the chance of collisions. Given how HashMaps prioritize access speed over memory efficiency by de-
sign, we feel it is not worthwhile to sacrifice performance in favor of footprint on a performance-focused
data structure. Here, too, can more accurate profiling be useful: with higher profiling precision, we could

identify which data structures are more likely to suffer from high rates of collision, and implement our

59

tuning algorithm in a way that either attempts to alleviate this collision problem, or avoids performing
tuning on such data structures so as not to deteriorate the performance even further.

However, our future work also opens new possibilities for optimizations that are uniquely suited to our
approach: by only modifying certain initialization arguments, our solution is applicable to a wide variety
of HashMap use cases where solutions such as inlining would perhaps be too complex to implement.
HashMaps are not the only data structures to take advantage of a dynamic resizing system, and future
work could focus on expanding our technique to apply to all data structures that follow this kind of
dynamic resizing "paradigm”. While we were able to obtain footprint reductions, a HashMap is still one
of many data structures in any large application. By extending our optimization techniques towards other
data structures, we could potentially achieve a situation where every data structure in an application is
tuned to some degree, combining into large footprint savings across the board.

In addition, at an early point in our development of this work, we investigated another technique
for optimizing HashMaps and other data structures: data structure replacement. Rather than tuning
the existing data structure to "behave” better, this optimization method entails completely replacing the
inefficient data structure with one that’s better suited for the predicted workload, and greatly synergizes
with ours: a HashMap with very few entries (that will never trigger a resize) may be one to ignore from our
side, but a perfect candidate to be replaced by an EconomicHashMap, a structure that is far better suited
to storing small numbers of entries. While the standard HashMap takes a "one-size-fits-all” approach,
with fixed sizes, resize factors and hashing functions and structures, EconomicHashMap tends to take
a more “fitted” approach, by changing the hashing function (if all the hash positions can be stored on
32-bit shorts, why use full 64-bit integers?) depending on the number of elements (or not having one
at all when their number is low enough) and varying resizes by the current structure size, among other
techniques.

Since each approach addresses the shortcomings of the other, these techniques may prove to be a
very powerful combination, and as such we believe data structure replacement is a theme that should

be studied with great attention.

60

Bibliography

[1] Cboe Exchange, Inc. Historical Market Volume Data, October 2022. URL https://www.cboe.com/

us/equities/market_statistics/historical_market_volume/. Accessed 23-October-2022.

[2] Chris Lattner and Vikram S Adve. Transparent pointer compression for linked data structures. In
Proceedings of the 2005 workshop on Memory system performance, pages 24—35, 2005.

[3] Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed. Fundamentals of data structures, vol-

ume 20. Computer science press Potomac, MD, 1976.

[4] Rodrigo Bruno, Vojin Jovanovic, Christian Wimmer, and Gustavo Alonso. Compiler-assisted object
inlining with value fields. In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation, pages 128—141, 2021.
[5] Oracle. GraalVM, April 2023. URL https://www.graalvm.org/. Accessed 24-April-2023.

[6] Oracle. Native Image - GraalVM reference manual, April 2023. URL https://wuw.graalvm.org/

22.0/reference-manual/native-image/. Accessed 24-April-2023.

[7] Raymond Reiter. On closed world data bases. In Readings in artificial intelligence, pages 119-140.
Elsevier, 1981.

[8] Gilles Duboscq, Lukas Stadler, Thomas Woirthinger, Doug Simon, Christian Wimmer, and
Hanspeter Mdssenbdck. Graal ir: An extensible declarative intermediate representation. In Pro-

ceedings of the Asia-Pacific Programming Languages and Compilers Workshop, pages 1-9, 2013.

[9] Thomas Wirthinger, Christian Wimmer, and Hanspeter Mdssenbdck. Visualization of program
dependence graphs. In Compiler Construction: 17th International Conference, CC 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings 17, pages 193—196. Springer, 2008.

[10] Christopher Arthur Lattner. Macroscopic data structure analysis and optimization. University of
lllinois at Urbana-Champaign, 2005.

61

https://www.cboe.com/us/equities/market_statistics/historical_market_volume/
https://www.cboe.com/us/equities/market_statistics/historical_market_volume/
https://www.graalvm.org/
https://www.graalvm.org/22.0/reference-manual/native-image/
https://www.graalvm.org/22.0/reference-manual/native-image/

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

David A Barrett and Benjamin G Zorn. Using lifetime predictors to improve memory allocation
performance. In Proceedings of the ACM SIGPLAN 1993 conference on Programming Language
Design and Implementation, pages 187—196, 1993.

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R
Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason Orendorff, et al. Trace-based just-
in-time type specialization for dynamic languages. ACM Sigplan Notices, 44(6):465-478, 2009.

Dibakar Gope and Mikko H Lipasti. Hash map inlining. In Proceedings of the 2016 International

Conference on Parallel Architectures and Compilation, pages 235-246, 2016.

Tobias Pape, Carl Friedrich Bolz, and Robert Hirschfeld. Adaptive just-in-time value class optimiza-
tion: transparent data structure inlining for fast execution. In Proceedings of the 30th Annual ACM

Symposium on Applied Computing, pages 1970-1977, 2015.

Michael G Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek Sarkar, Mauri-
cio J Serrano, Vugranam C Sreedhar, Harini Srinivasan, and John Whaley. The jalapeno dynamic
optimizing compiler for java. In Proceedings of the ACM 1999 conference on Java Grande, pages
129-141, 1999.

Joep L. W. Kessels. On-the-fly optimization of data structures. Communications of the ACM, 26
(11):895-901, 1983.

PCDiga. PCDiga, April 2023. URL https://www.pcdiga.com/. Portuguese computer store, Ac-
cessed 24-April-2023.

Changhee Jung and Nathan Clark. Ddt: design and evaluation of a dynamic program analysis
for optimizing data structure usage. In Proceedings of the 42nd Annual IEEE/ACM International

Symposium on Microarchitecture, pages 56—66, 2009.

Christian Wimmer and Hanspeter Méssenbdck. Automatic array inlining in java virtual machines.
In Proceedings of the 6th annual IEEE/ACM international symposium on Code generation and

optimization, pages 14—23, 2008.

Changhee Jung, Silvius Rus, Brian P Railing, Nathan Clark, and Santosh Pande. Brainy: Effective
selection of data structures. ACM SIGPLAN Notices, 46(6):86—97, 2011.

Julian Dolby. Automatic inline allocation of objects. In Proceedings of the ACM SIGPLAN 1997

Conference on Programming language design and implementation, pages 7—17, 1997.

Julian Dolby and Andrew Chien. An automatic object inlining optimization and its evaluation. In
Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and imple-
mentation, pages 345-357, 2000.

62

https://www.pcdiga.com/

[23]

[24]

[25]

[26]

[27]

[28]

Youtao Zhang and Rajiv Gupta. Data compression transformations for dynamically allocated data
structures. CC, 2:14-28, 2002.

Gilles Duboscq, Thomas Wiurthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and
Hanspeter M6ssenbéck. An intermediate representation for speculative optimizations in a dynamic
compiler. In Proceedings of the 7th ACM workshop on Virtual machines and intermediate lan-

guages, pages 1-10, 2013.

Matthias Grimmer, Stefan Marr, Mario Kahlhofer, Christian Wimmer, Thomas Wdrthinger, and
Hanspeter Méssenbdck. Applying optimizations for dynamically-typed languages to java. In Pro-
ceedings of the 14th International Conference on Managed Languages and Runtimes, pages 12—
22,2017.

Chiba, Shigeru. Javassist, April 2003. URL https://wuw.javassist.org/. Accessed 26-May-
2023.

Sauthoff, Georg. Tstime, January 2009. URL https://github.com/gsauthof/tstime. Measure
highwater RSS memory usage of processes using the taskstats API, Accessed 26-May-2023.

Tene, Gil. wrk2, March 2012. URL https://github.com/giltene/wrk2. a HTTP benchmarking

tool based mostly on wrk.

63

https://www.javassist.org/
https://github.com/gsauthof/tstime
https://github.com/giltene/wrk2

64

65

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Solution definition
	1.4 Organization of the Document

	2 Background
	2.1 Topic overview
	2.1.1 Data structures
	2.1.2 Optimization of dynamic languages
	2.1.3 Native Image
	2.1.4 GraalVM Intermediate Representation
	2.1.5 Profiler-guided optimizations

	2.2 Related works
	2.2.1 Observations

	3 Architecture
	3.1 Tuning opportunity detection
	3.2 Application Execution Profiling
	3.3 Data Structure Tuning
	3.3.1 Tuning algorithm
	3.3.2 Theoretical results

	4 Implementation
	4.1 Analysis and opportunity detection
	4.2 Profiling
	4.3 Tuning

	5 Evaluation
	5.1 Methodology
	5.2 Results

	6 Conclusion
	6.1 Conclusions
	6.2 Future Work

	Bibliography

