
Java Network Virtualization

Jorge Catarino Estevão Tróia Godinho
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Abstract

In Function-as-a-Service, an event-driven computing model, functions are invoked in multiple concurrent

invocations. The runtime has to be initialized for each invocation, increasing the invocation latency. One

way to minimize this time is for functions to share the same runtime. But, by having multiple functions

sharing the same runtime, there are some issues, being network isolation one of them. We want to

separate functions in order to call them in different ports, for example. The proposed solution for the

network isolation issue is to use network namespaces to ensure network isolation and GraalVM Native

Image Isolates to ensure memory isolation.
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iii





Resumo

No modelo Function-as-a-Service, um modelo de computação orientado a eventos, funções são invo-

cadas em múltiplas invocações concorrentes. A cada invocação, o runtime tem de ser inicializado, o que

faz com que a latência de invocação aumente. Uma maneira de minimizar esta latência é haver partilha

de runtimes entre funções. No entanto, por haver funções a partilhar o mesmo runtime, surgem alguns

problemas, sendo a isolamento de rede um deles. Algo que se pretende é isolar funções diferentes e

poder invocá-las em diferentes portos, por exemplo. A solução proposta para o problema da isolamento

de rede é usar network namespaces para garantir isolamento de rede e GraalVM Native Image Isolates

para garantir isolação de memória.

Palavras Chave

Function-as-a-Service; Network Namespaces; GraalVM Native Image Isolates.
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1
Introduction

Contents

1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

In the early days of cloud computing, users were responsible for maintaining and managing a lot of

infrastructure. This led to cloud computing offerings moving towards fine-grained virtualization where

applications could automatically scale with minimal intervention from the user. This push for moving

more responsibility away from users and into the cloud provider’s side led to the appearance of new

cloud services such as Function-as-a-Service (FaaS for short).

In FaaS, each function is containerized to run a short set of operations that perform some task.

Applications are deployed as short business logic units, they scale automatically and are elastic and the

user only pays for the usage of the invoked functions.

1



1.1 Problem

The existing virtualization techniques are quite expensive to ensure this fine granularity since the func-

tions are very light and fast, and the virtualization becomes a bottleneck [10]. These virtualization

techniques should be improved to minimize the cost of having a lightweight virtualization approach.

Some initial steps have already been done, such as using a single runtime to host multiple concurrent

function invocations [3]. However, there are still isolation problems, such as ensuring network isolation.

By not isolating the network, there wouldn’t be a rigorous way to call different functions. We want

to be able to call different functions giving different network ports and have an opened socket for each

function listening at those ports.

1.2 Goal

To virtualize Runtime Languages, the network needs to be virtualized. We will focus on how to isolate the

network of multiple applications running in the same language runtime to ensure that each application

doesn’t share any network resource with any of the others that are running in the same environment.

We also need to measure the scalability of this network isolation to ensure it does not add any

bottleneck in terms of the creation and deletion time of a function.

1.3 Proposed Solution

To achieve network isolation between multiple functions running in the same language runtime we are

going to use network namespaces. Network namespaces are copies of the host network stack that

provide isolation of network system resources. For each function, a new network namespace will be

created and it will ensure that the function won’t be able to communicate with any of the other functions.

Although isolating each function’s network, we still want to have control over its routes. If we want to

have functions that exchange information between them, we should be able to add routes to make sure

they can communicate.

We will also take advantage of existing memory isolation techniques, such as Native Image Isolates,

and we will piggyback create and tear down to create and delete network namespaces.

This document will start with the background, where some concepts related to this thesis will be

introduced. Then comes the state of the art, where some papers with similar goals as our thesis will

be presented. After the state of the art comes the solution architecture, where the proposed solution is

presented, approaching the network namespaces’ and isolates’ interface. After the solution architecture,

we will present the implementation details. Then, there will be presented the evaluation results, and

2



finally, there will be a conclusion section.
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2
Background

Contents

2.1 Virtualization Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Cloud computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Lightweight Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Network Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

In this section, we will talk about some concepts that are related to the thesis, such as virtualization

technologies, cloud services, memory isolation, and network isolation.

2.1 Virtualization Technologies

Virtualization [11] is the process to run a virtual instance of a computer system in a layer that is ab-

stracted from the actual computer hardware. These virtual instances are called Virtual Machines [12].

Each Virtual Machine runs a separate operating system that operates as an independent computer,

although sharing the actual hardware resources.

Hypervisor is the software that is responsible for the coordination and provisioning of the resources

between the VMs and the actual hardware.

5



Figure 2.1: User’s and cloud provider’s responsibility in the different cloud computing models.

Container [13] [14] is an application deployment solution that packages all the software and all the

needed dependencies needed to run an application. Containers run anywhere and they are small and

fast because they don’t include the guest operating system.

In other words, containers virtualize the host operating system, making them faster than Virtual

Machines.

MicroVM [15] [16] [17] is a virtual machine that has its hardware isolated having a secure environ-

ment to run tasks having untrusted sources. By having this secure environment, MicroVMs have limited

access to the operating system resources and can’t interact with other processes.

Summing up, both virtual machines and MicroVMs are isolated from the host system, though virtual

machines offer a more complete isolation, being MicroVms more lightweight. Containers are the most

lightweight of these 3 virtualization techniques since they share the host operating system and kernel,

and the isolation is placed at an application level.

We would use virtual machines when there is a complete isolation requirement, MicroVMs when we

want strong isolation while being able to run untrusted tasks, and containers when we want to deploy

scalable applications across different environments.

6



2.2 Cloud computing

Cloud computing was created to answer the need for companies to grow over time and expand their

local infrastructure to adapt their computational needs to the demands of the customers.

Cloud computing is supported by some virtualization techniques such as Virtual Machines, contain-

ers, and MicroVMs, and it differs from traditional computing in the way that using these virtualization

techniques, data is stored and services are hosted over the internet instead of locally.

Cloud computing can be exposed through a number of services that will be presented ahead, such

as Infrastructure as a Service, Platform as a Service, Function as a Service, and Software as a Ser-

vice. Figure 2.1 shows the barrier that exists between the user-managed and cloud provider-managed

infrastructure in the different cloud computing models.

2.2.1 IaaS (Infrastructure as a Service)

Infrastructure as a Service [18] is a cloud computing model that offers virtualized computing resources.

As presented in Figure 2.1, the cloud provider ensures the management of servers, networks, and

storage and provides these resources through virtual machines. It also provides some services such as

monitoring, detailed billing, load balancing, etc.

One of the main advantages of IaaS is that the user doesn’t need to manage and buy the infrastruc-

ture behind the services, the provider takes care of all of that.

2.2.2 PaaS (Platform as a Service)

Platform as a Service [19] is a cloud computing model that delivers everything a user needs to deploy

an application, that extends an existing platform/framework. Like IaaS, PaaS provides infrastructure

through virtual machines, but it also provides development tools, database management systems, etc.

as it supports the complete application lifecycle.

It has the same advantages as IaaS, and one of the main advantages over IaaS is that the time to

code is lower, since PaaS provides pre-built frameworks that applications can extend to implement their

domain logic.

2.2.3 FaaS (Function-as-a-Service)

Function-as-a-Service [20] is a cloud development model that executes some applications in response

to events. All the infrastructure, such as physical hardware, virtual machines, operating systems, and

web server software management are configured and handled by the cloud provider. This way, the user

is only focused on the development of the application’s functions.
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FaaS has several advantages such as the focus on the code and not on the infrastructure, the user

only pays for what he/she uses, so, every time the code isn’t being executed, the user isn’t charged and

the functions are scaled up and down automatically depending on the function’s demand.

Serverless [21] is a cloud development model that is mainly focused on the development of the

application without the concern of infrastructure. The cloud provider provides the resources to the user

and bills him for its computation. This way, FaaS is a subset of Serverless, since serverless has a wider

range of development focus (compute, storage, API gateways, etc.), while FaaS has its focus on the

event-driven programming model.

Serverless/FaaS is very attached to containers/VMs, and in order to have multiple functions running

in the same runtime environment there are some concerns that have to be accounted for, such as

memory isolation. Every process should only read and access its own memory space. This is not trivial,

so, later in the document, we will introduce GraalVM, a technology that addresses this concern.

2.2.4 SaaS (Software as a Service)

Software as a Service [22] is a cloud computing model that allows users to use cloud-based apps over

the internet, like calendaring, email, and office tools. Using SaaS, the user rents the service and the

provider handles the infrastructure, middleware, software, and data, and also maintains it.

The main advantage of SaaS is that the user doesn’t need to install, maintain, or update anything

and the cloud provider handles all of that and provides a functional app for the user.

2.2.5 Function as a Service advantages

Function as a Service is interesting compared to Platform as a Service and Software as a Service due

to the fact that Function as a Service is auto-scalable and it is very simple to deploy a function as the

user only has to code the logic of the application.

2.3 Lightweight Virtualization

One way to reduce the overheads of virtualization is to allow multiple function invocations sharing the

same runtime. In order to guarantee this, memory isolation is needed. Memory isolation can be achieved

by using Isolates [23], a technology that will be presented ahead.

2.3.1 GraalVM Native Image

GraalVM Native Image [23] is a technology that ahead-of-time compiles Java code to an executable,

called native image, which contains the application classes, dependencies’ classes, runtime library

8



classes, and statically linked native code from JDK. This way it has a faster startup time and will most

likely use less memory.

2.3.2 GraalVM Truffle

GraalVM Truffle [23] is an open-source library that provides ”language-level” virtualization, i.e. allows

multiple languages to run in the same process, without adding any performance cost. It also provides

a way for multiple applications to share the same runtime environment (for example the JVM). This is

relevant for cloud computing since having a lot of small applications running in a different JVM is more

expensive and stacking applications in a JVM can reduce significantly this cost.

Figure 2.2: Heap divided in isolates.

2.3.3 Isolates

Isolates [23] is also a GraalVM feature. A GraalVM isolate is a disjoint heap. It allows having isolated

memory for multiple threads running the same application. This is relevant to cloud computing since

if one thread uses a lot of memory it can trigger garbage collection which slows all the other threads

using the heap. Having independent heaps for each thread the garbage collection is called for a deter-

mined heap and the other threads are not penalized. Isolates have another optimization that is called

compressed pointers. Instead of mapping memory addresses through 64-bit pointers, Isolates mapped

them using 32-bit pointers. In the context of cloud computing, the isolates should be small. This way,

64-bit pointers would be a bottleneck and 32-bit pointers should be more than enough. Figure 2.2 shows

9



Figure 2.3: Network interfaces.

two isolates in a process. We can see that each isolate has an image heap copy, that is managed using

a copy-on-write mapping, and a run-time heap, independent for each isolate.

2.4 Network Isolation

With Isolates, the memory isolation chapter is closed. Similarly to memory isolation, there is network

isolation. Every function in the same runtime environment should have its own network resources. The

next Linux technologies will address this concern.

2.4.1 Network Interfaces

In Linux, a network interface is a point where the connection between the computer and the network is

done. There are two types of network interfaces: Physical Network Interfaces, which represent phys-

ical network cards (hardware), and Virtual Network Interfaces, which are an abstraction of a network

interface and may or may not be connected to a physical network card. An operating system may have

any number of network cards and as many physical interfaces as physical network cards. Figure 2.3

shows the output of running the command ip link, which shows the network interfaces available in a

computer and their details.

2.4.2 Routing tables

In Linux, a routing table [24] is a configuration that has information to make decisions about where to

send data packets. If the destination host is on the local network, the data is sent directly to the destina-

tion host, if the destination host is on a remote network but that network is reachable via a local gateway

that is in the routing table, the data is sent to that local gateway and if the destination host is on a remote

network that is unreachable by any gateway in the routing table, the data is sent to the default gateway.

Figure 2.4 shows the output of the command route -n, which shows the routing table of the default
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Figure 2.4: Routing table.

Figure 2.5: Network namespaces connected by a veth.

interface.

2.4.3 Network Namespaces and Virtual Ethernet Devices

Network isolation can be achieved by combining the following concepts: network namespace and veth

(Virtual Ethernet Device). Network namespaces are copies of the host network stack that provide the

isolation of the system resources such as network devices, IPv4 and IPv6 protocol stacks, routing tables,

port numbers (sockets), etc. A virtual network device pair (veth) acts like a tunnel between network

namespaces.

Figure 2.5 is a visual demonstration of two network namespaces connected with a veth pair.

A network namespace can be created and deleted using the following shell commands:

1 ip netns add <namespace name>

2 ip netns delete <namespace name>

In order to create a veth and connect it to a namespace we have to use these shell commands:

1 ip link add <entry point veth name>

2 type veth peer name <function veth name>
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3 ip link set <function veth name>

4 netns <function namespace name>

12
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In this section, we will cover some works related to FaaS that try to achieve similar goals as this

thesis, i.e. function’s isolation in general.
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3.1 Groundhog: Efficient Request Isolation in FaaS [1]

In FaaS, each function is executed in its container to prevent concurrent executions of different func-

tions. Consequent invocations of the same function reuse the state of the previous invocations to min-

imize cold-start delays. Since security is a core responsibility of FaaS, this becomes a huge problem.

Groundhog isolates subsequent invocations of the same function in order to have a clean state free of

data leaks every time the function is invoked. Groundhog achieves isolation using a lightweight process

snapshot/restore mechanism. Each function is encapsulated in a containerized process and a snapshot

of each function’s fully initialized state is taken. This state is free of any requests, so it should be free

of any secrets that could appear by handling requests. Groundhog uses this snapshot to restore the

runtime state after a function returns its result. This way it ensures that subsequent requests have the

initial state. The Groundhog architecture is shown in Figure 3.1.

With this paper, security is achieved since every invocation will have a clean start state. Network

isolation is also achieved, but in a different way than we want. Groundhog uses containers to isolate

functions, and our goal is to separate functions running in the same runtime.

Figure 3.1: Groundhog architecture [1].

3.2 From Warm to Hot Starts: Leveraging Runtimes for the Server-

less Era [2]

This paper hints at the fact that serverless functions that run in runtimes like JVM and Node.js run

unoptimized code most of the time. After the cold-start, as the function is being invoked, the runtime

makes calls to the Just-In-Time compiler to optimize the code (warm-start). When the runtime generates

the most optimal code, the function is going to execute with the maximum performance possible (hot-

start). Figure 3.2 shows two different code pipelines, the JavaScript Engine (V8) pipeline and the JVM
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(HotSpot) pipeline. Due to serverless functions’ short-living nature, the function might never reach the

best performance. The paper proposes Ignite, a system where runtimes cooperate to generate the most

optimized code, sharing the code optimizations between them.

Although the system offers a way to minimize cold starts, invocations are still executed with no

network isolation.

Figure 3.2: Code pipeline JavaScript and Java runtimes [2].

3.3 Photons: Lambdas on a diet [3]

Figure 3.3: Memory usage in a serverless image classification task [3].

Nowadays, serverless platforms initialize and schedule each invocation separately, even when a

countless number of invocations use the same code and runtime. There are two pointed inefficiencies.
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The first inefficiency is that there is no memory being shared among the invocations, which increases

memory utilization. Figure 3.3 confirms this inefficiency, showing that most of the memory used is for

the runtime, libraries, and the machine learning model, which becomes the same for all invocations. The

second inefficiency is that each invocation has to initialize its runtime imposing a high total execution

time overhead. This paper presents Photons, an execution context based on runtime and app-state

virtualization for serverless functions, like Figure 3.4 suggests. Photons use a very lightweight isolation

layer based on bytecode rewriting while allowing safe runtime sharing to concurrently run many instances

of the same serverless function.

Figure 3.4: Virtualization layers in today’s serverless containers versus virtualization layers in Photons [3].

Although Photons share states between runtimes to safely run concurrent instances of functions, it

doesn’t ensure network isolation.

3.4 Pushing Serverless to the Edge with WebAssembly Runtimes

[4]

Serverless computing is ideal for handling unpredictable and bursty workloads, although, cold-start la-

tencies of hundreds of milliseconds impede support for latency-critical IoT services. The authors of this

paper argue that OS-level virtualization is unsuitable for serverless edge computing, so they intend to

replace it with a technology called WebAssembly (Wasm) [25]. Wasm is a portable, binary instruction

format for memory-safe, sandboxed execution. Its functions’ creation and deletion time are around 10s

microseconds, approximately 10 times faster than usual AWS and Google Cloud Platform functions that

lay around milliseconds. Figure 3.5 shows the invocation flow of a Wasm action. Basically, an invoker

injects code into a Wasm Executer, which then creates a Wasm Module ready for execution. The invoker

then instructs the Wasm Executer to invoke the Wasm Module. The result is then returned to the invoker.
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Figure 3.5: Invocation flow of a Wasm action [4].

This paper proposes using WebAssembly [25] which reduces function creation and deletion times to

much lower values but it doesn’t propose/enforce any network isolation.

3.5 Nightcore: Efficient and Scalable Serverless Computing for

Latency-Sensitive, Interactive Microservices [5]

The microservice architecture is a popular software engineering approach for building large-scale on-

line services that are used by many big companies, such as Amazon, Netflix, etc. In Figure 3.6 there

is a graph that represents the flow of uploading a new post in a micro-service-based SocialNetwork

application [8]. Serverless computing offers a new way of building microservice-based applications.

However, FaaS systems have invocation latency overheads ranging from a few to tens of milliseconds,

making them a bad choice for latency-sensitive microservice-based applications. Latency-sensitive

microservice-based applications also have another performance challenge, due to the high invocation

of requests these applications should support. So, the authors state two performance goals to effi-

ciently support interactive microservices, that are: invocation latency overheads must be well within

100 microseconds and the invocation rate must scale to 100K/s with a low CPU usage. Previous stud-

ies showed that FaaS runtime overheads could be reduced to a microsecond scale but with the cost

of weakening isolation between functions. To follow the microservice architecture approach, isolation

should be guaranteed, but achieving the goals written above with proper isolation between the functions

is a technical challenge. So, the authors present Nightcore, which is a serverless function runtime de-

signed to reach the goals above, to ensure high performance, and also guarantee isolation between

functions.

Nightcore proposes container-level-based isolation of each function with the goal of following the

microservice architecture approach. Network isolation is achieved by using containers. The goal of this

thesis isn’t to achieve network isolation using containers, it is to achieve network isolation for functions
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Figure 3.6: RPC graph of uploading new post in a microservice-based SocialNetwork application [8]. This graph
omits stateful services for data caching and data storage [5].

running in the same runtime.

3.6 FaasCache: Keeping Serverless Computing Alive with Greedy-

Dual Caching [6]

The initialization of a FaaS container (i.e., the cold-start) which involves the container creation and

fetching of the necessary code and dependencies adds significant overhead to the function latency. To

weaken cold-start latency, a common technique used is to keep the runtime environment warm for a

certain duration, so that future function invocations reuse this already initialized runtime environment.

Although reducing the cold-start latency, it consumes more resources, which can reduce the overall

system utilization and efficiency. The authors state that keep-alive policies can have a critical impact

on performance and should be introduced into resource allocation and provisioning. They will focus on

how to balance the latency vs. utilization tradeoff by developing new resource management techniques.

Keep-alive policies should be based on the functions’ usage, so here is a challenge, since there is a

wide variety of functions with different request frequencies. The authors correlate functions’ resource

management with object caching, where keeping a function warm is equivalent to caching an object

and a warm invocation is equivalent to a cache hit. Destroying one function execution will originate a

cache miss in its next invocation. They use and adapt the Greedy-Dual caching framework and develop

keep-alive policies based on it, which will improve the function latency and the system utilization and

efficiency.

This paper allows a function to have a more in-depth keep-alive policy in terms of its usage but it

ignores the problem of network isolation.
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3.7 RunD: A Lightweight Secure Container Runtime for High-density

Deployment and High-concurrency Startup in Serverless Com-

puting [7]

In serverless computing, microVMs have started hosting isolated containers. There is a high demand

for deployment and concurrency container startup, in order to efficiently manage resource utilization and

also to offer a better experience to the user since functions are fine-grained in serverless systems.

Investigations concluded that these software stacks are inefficient in creating rootfs and groups,

which results in low container startup concurrency. It also has a high memory footprint, which results in

low container deployment density. These bottlenecks are showed in Figure 3.7.

Figure 3.7: The state-of-the-art secure container model, and several bottlenecks in the architecture stacks [5].

The authors propose RunD, a lightweight secure container runtime that resolves the problems of

duplicated data across containers, high memory footprint, and high host-side cgroup overhead. The

authors could conclude that data user-provided data is read-only to the operating system and operat-

ing system-provided runtime files are also read-only for user functions. Addressing the challenge of

resolving the high-density and high-concurrency scenario for container rootfs, this information is used

in order to separate read-only data from writable data. In order to resolve the memory used by each

container, the authors propose two techniques that the deployment density can be increased. These

techniques are reducing the guest kernel size by disabling some features that are not going to be used

and alleviating the code self-modification, by using a pre-patched microVM template. Lastly, to resolve

the bottleneck of the cgroup operations, they conducted an investigation and found out that creating

groups concurrently is time-consuming since the kernel can’t parallelize cgroup-related operations, and

that pre-creating and maintaining groups in a pool could reduce the group creation overhead since only

the cgroup rename is used. Using these conclusions, the authors proposed a lightweight cgroup to

address cgroup-operations overhead.

19



3.8 Discussion

This section presented a number of papers related to the central topics of this work: lightweight vir-

tualization and how to improve the performance of serverless applications. Some of them mentioned

network isolation and functions running in the same runtime, but none of the papers achieved our thesis

goal, which is to ensure network isolation in functions that share the same runtime environment.

Groundhog [1] focused on clearing the state of subsequent invocations of the same function in order

to reuse the function’s already initialized environment and Nightcore [5] focused on ensuring high per-

formance and isolating functions, two objectives that together were an issue to accomplish. Although

these papers achieved network isolation, they used containers in order to do that.

Photons [3] achieved lightweight virtualization by moving functions to the same runtime. However,

network isolation wasn’t achieved.

Ignite [2] and Pushing Serverless to the Edge with WebAssembly Runtimes [4] offer different ways

of minimizing cold starts. In Ignite [2] runtimes cooperate between them to generate the most optimized

code and make fewer calls to the Just-In-Time-Compiler and in Pushing Serverless to the Edge with

WebAssembly Runtimes [4] it is proposed to use WebAssembly [25] which is gonna reduce the function

create and deletion time. Network isolation was achieved in neither of these papers.

Finally, FaasCache [6] proposes a way of predicting cold starts and this way keeps functions alive

based on their usage. Again, network isolation wasn’t achieved in this paper.
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In this section, we will move to the proposal of the solution architecture. It starts with a brief overview

of the solution, then we’ll move to how the Linux namespace interface works and how can we use it.

Then we will discuss how to connect namespaces to Native Image Isolates, where function invocations

will be handled.

4.1 Solution Overview

Figure 4.1 shows the base architecture to achieve network isolation in a Native Image runtime that has

multiple functions using isolates. The runtime is composed of:

• A main thread (entry point thread), which is the entry point of our runtime and that has the

responsibility of forwarding the incoming requests to another thread according to the function the

request is calling. The entry point thread inherits the host’s default network namespace;
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Figure 4.1: System base architecture.

• Function threads, that run some function invocation code. Similarly to the entry point, each of

these threads executes inside an isolate which ensures that there is one heap for each group of

function threads. Each group of function threads will also execute in a network namespace, unique

to each of them, to ensure there is network isolation between them in the runtime.

If there were no different network namespaces, all threads would share the default network names-

pace and, as a consequence, network isolation would not be achieved. With each group of function

threads having a unique network namespace attached to it, we can create rules, explained in the sub-

sequent section, that dictate how the network stack of these threads is isolated.

4.2 Linux networking interface

As explained in the previous section, we will have to create some rules between network namespaces

to ensure network isolation. In order to do that, we will take advantage of already existing calls from

the Linux Kernel that will allow us to create network namespaces, create and enable veths, link veths to

network namespaces, set the IP addresses of the devices, set default network gateways and assign a

thread to a specific network namespace.

We will follow the isolation flow of a function being created, by ordering the commands that need to

be executed, which in the end will result in a function that is completely isolated from the other ones.

So, the first thing we need to do is create the network namespace that is going to be associated with

that function. To do that we can simply run the following command:
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1 ip netns add <namespace name>

After creating the network namespace, we will need to create a veth that will connect the function’s net-

work namespace to the entry point’s network namespace. Each veth has 2 edges, the entry point edge

and the function edge, which we call entry point veth name and function veth name, respectively.

A veth is created by running the command:

1 ip link add <entry point veth name>

2 type veth peer name <function veth name>

A veth is created in the scope of a network namespace, i.e. one of the edges of the veth will be

automatically assigned to the network namespace where the command to create the veth was executed.

The veth creation will be executed in the scope of the default network namespace (entry point’s network

namespace), so the next step will be to assign the function’s edge to the function’s network namespace

by running the command:

1 ip link set <function veth name>

2 netns <function namespace name>

Now it is time to assign IP addresses to each of the edges of the veth. For each function, a subnet will

be created. The IPs will be assigned depending on each subnet mask. It can be done by running these

commands:

1 ip addr add <entry point ip> dev <entry point veth name>

2

3 ip netns exec <function namespace name>

4 ip addr add <function ip> dev <function veth name>

After creating and setting up the veth, we will need to enable its edges, since its edges are disabled by

default when a veth is created. To do that, we can simply run the commands:

1 ip link set <entry point veth name> up

2

3 ip netns exec <function namespace name>

4 ip link set <function veth name> up

After creating a network namespace, its routing table is empty by default, so now we will need to set the

default network gateway to the entry point’s IP by running the command:
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1 ip netns exec <function namespace name>

2 route add

3 default gw <entry point ip> <function veth name>

By default, a network namespace can’t connect with the internet, because the network namespaces

veths have private static IP addresses assigned. Since the IPs are static, we can’t use NAT (Network

Address Translation) with the default settings. In order to make possible the translation, we will use

iptables to masquerade and accept traffic in the entrypoint veths. In order to do these operation we have

to run these commands:

1 iptables -t nat

2 -A POSTROUTING -s <entry point ip>

3 -o <forward interface name> -j MASQUERADE

4

5 iptables -A FORWARD

6 -i <forward interface name>

7 -o <entry point veth name> -j ACCEPT

8

9 iptables -A FORWARD

10 -o <forward interface name>

11 -i <entry point veth name> -j ACCEPT

The forward network interface can be obtained by running the following command:

1 ip -o route | grep default | awk '{print $5}'

By now, we will have a completely isolated network namespace. All there is left to be done is assign

the thread where the function will run to this new network namespace. That can be done using a C

function called setns, which receives the file descriptor (FD) of the new network namespace and a flag

that represents the type of the Process ID given (we should use the flag that indicates that the PID

corresponds to a network namespace). After calling this function, the current thread will be now running

on top of the given network namespace.

1 int setns(int fd, int nstype);

At some point, we will want to delete the namespaces. This can be done by running the following

command:
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1 ip netns delete <function namespace name>

We have not found yet a programmatic interface to embed this in the code, with the exception of the

setns function. If there is one programmatic interface, the replacement would be trivial.

4.3 Connecting namespaces with isolates

We want to connect the isolate creation and invocation with our serverless system. As our first solution,

presented as Algorithm 1, the system will receive requests to invoke functions. In each request, the

network will be isolated following the steps of the previous subsection. Now, already in the function’s

thread which is already assigned to the new network namespace, we will have to create an isolate, copy

the necessary objects to that new isolate, invoke the method that executes the code in the new isolate,

copy the function’s result from the new isolate to the source isolate, tear down the new isolate, and then

delete the network namespace. Although this works, it is very inefficient. In every function invocation,

we will virtualize the network and also create an isolate, and this is very expensive.

This way, we propose a second solution, presented as Algorithm 2, where we will reuse namespaces

and isolates. In this solution, we have a list that has available namespaces, i.e. namespaces that are

not running any function. We start by receiving a request and parsing the arguments. Then we verify

if there is any available namespace. If there is an available namespace, we will get that namespace,

remove it from the list, and attach the current thread to that isolate. If there is no namespace available,

we will create one, isolate the network, and then create an isolate. After isolating the network and heap,

the function is invoked, but it won’t tear down the isolate. Instead of that, we will detach the current

thread from the isolate and add the namespace back to the namespace list. By using this algorithm,

subsequent requests can reuse namespaces and isolates that were used in previous requests. By

detaching the threads from the isolates, the state that was created by them will be cleaned, so it is safe

to reuse the isolates and network namespaces.

There will also exist a thread that will run Algorithm 3. This algorithm will delete unused namespaces

and isolates. This thread will be scheduled to run within a certain interval of time, which is a threshold

for network namespace and isolate non-utilization.
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Algorithm 4.1: First solution to integrate isolates with the system.
while true do

request← getRequest();
args← request.getArgs();
networkNamespace← createNetworkNamespaceAndIsolateNetwork();
newIsolate← createIsolate();
currentIsolate← getCurrentIsolate();
argsHandle← copyArgsToIsolate(newIsolate, args );
resultHandle← invokeFunction(newIsolate, currentIsolate, argsHandle );
result← getResultFromHandle(resultHandle );
teardownIsolate(newIsolate );
deleteNetworkNamespace(networkNamespace );
sendResponseBack(result );

Algorithm 4.2: Second solution to integrate isolates with the system with namespace and iso-

late reuse.
while true do

request← getRequest();
args← request.getArgs();
if availableNetworkNamespaces.isEmpty() then

networkNamespace← createNetworkNamespaceAndIsolateNetwork();
isolateThread← createIsolate();
isolate← getIsolateFromIsolateThread();
networkNamespace.setIsolate(isolate );

else
networkNamespace← availableNetworkNamespaces.get(0);
availableNetworkNamespaces.remove(networkNamespace );
isolate← namespace.getIsolate();
isolateThread← attachCurrentThread(isolate );

currentIsolate← getCurrentIsolate();
argsHandle← copyArgsToIsolate(isolateThread, args );
resultHandle← invokeFunction(isolateThread, currentIsolate, argsHandle );
result← getResultFromHandle(resultHandle );
detatchIsolateThread(isolateThread );
availableNetworkNamespaces.add(networkNamespace );
sendResponseBack(result );

Algorithm 4.3: Namespace deletion and isolate tear down.
while running do

if availableNetworkNamespaces.size() > MAX NETWORK NAMESPACES then
while availableNetworkNamespaces.size() > MAX NETWORK NAMESPACES do

networkNamespace← availableNetworkNamespaces.get(0);
availableNetworkNamespaces.remove(networkNamespace );
teardownIsolate(networkNamespace.getIsolate());
deleteNetworkNamespace(networkNamespace );

sleep (60);
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The network virtualization, using network namespaces, was integrated on a high-performance server-

less platform called Graalvisor [26]. Graalvisor combines the use concepts of Native Image, Isolate, and

Truffle to have function invocations at a large scale with low latency and low memory footprint, compared

with other traditional serverless platforms.

5.1 Graalvisor

As stated before, Graalvisor already makes use of the concepts of Native Image, Isolate, and Truffle

in order to have low latency and low memory footprint on function invocations at a larger scale. Since

FaaS is executed in a Serverless approach, users don’t have control over the environment where the

function is running. Traditional environment virtualization techniques are quite expensive, but by using

Native Image Isolates it is possible to virtualize the environment where the function runs without any
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Figure 5.1: Native Image Isolates performance [9].

performance issues as Image 5.1 shows. Like traditional Serverless platforms, Argo offers an endpoint

to register new functions and another endpoint to invoke registered functions.

Graalvisor offers serverless function wrappers that offer support for Native Image Isolates and Truffle

Languages. A Lambda Proxy is the entry point of function invocations. It is responsible for the register

and management of functions and also responsible for function invocations by making use of HTTP

endpoints.

As Figure 5.2 shows, Graalvisor has a thread pool that contains threads that will be used to execute

invocation requests. If at any time there is no thread available to execute a request, a new thread is

created and added to the pool. Threads that are inactive for sixty seconds are terminated and removed

from the thread pool. These threads have a record of function cache, that contains the isolate pool for

each of the registered functions. Similar to the thread pool, if any time there is no isolate available to

perform an invocation, a new isolate is created, and an isolate is destroyed and removed from the isolate

pool after sixty seconds of inactivity. Each isolate contains in memory the associated function code and

the invocation data needed to execute the function.

5.2 Native Image Isolates implementation

Graalvisor already has support for function execution using Native Image Isolates. There are two Isolate

implementations, one is cached and the other one isn’t cached. Both can run in the same runtime

environment. A specific argument can be passed to the function invocation request in order to run one

implementation or the other.

When a function invocation request is received and there is not any cache argument, or the cache

argument is set to false, a new Isolate will be created, then the function will be invoked with the argu-

ments passed, and finally, after the invocation ended, this Isolate will be deleted. This Isolate will only
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Figure 5.2: Graalvisor architecture.

serve this particular invocation, so each invocation request will create one Isolate and then destroy it.

On the other hand, when a function invocation is received with the cache argument set to true,

things get more complex. There are workers that process requests and each worker is associated with

a function pipeline that contains a queue of requests associated with a particular function. Workers

retrieve requests from this queue in order to process them. A worker is an isolated thread and each

has a unique Isolate. The worker thread starts by creating the Isolate, and then it starts an infinite

loop processing requests by polling requests from the associated function pipeline. After 60 seconds of

not being able to retrieve any request from the function pipeline, the infinite loop ends. The Isolate is

destroyed and the worker is killed.

5.2.1 Isolates Java API

Graalvisor uses the Java API for Isolates [23, 27] in order to manage Isolates. Isolates is the iso-

late main type and every thread that is assigned to an isolate is represented by IsolateThread. This

IsolateThread type will be the one that is going to be used to invoke a method in an isolate.

1 public final class Isolates {

2

3 public static IsolateThread createIsolate(
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4 Isolates.CreateIsolateParameters parameters);

5

6 public static IsolateThread attachCurrentThread(

7 Isolate isolate);

8

9 public static void detachThread(IsolateThread thread);

10

11 public static void tearDownIsolate(

12 IsolateThread thread);

13

14 }

Listing 5.1: Java Isolates API.

The createIsolate method, as the name suggests, creates the new isolate. Objects of the calling

isolate will not be available in the new isolate and the thread assigned to the new isolate will be the

thread where the createIsolate method is called.

The attachCurrentThread method will assign the current thread to the isolate passed as an argu-

ment, returning an object of type IsolateThread, which links the isolate to the current thread. If the

thread passed as an argument is already assigned to the isolate, the returning value will be the object

that already connects the isolate to the current thread.

The detachThread method will detach the thread passed as an argument, discarding any state cre-

ated by the thread in the heap. When this method is called there cannot be any code being executed in

the isolate thread’s context.

The tearDownIsolate method takes down the isolate associated with the thread passed as an ar-

gument. It waits for other threads to detach from the isolate and then discards the isolate’s objects,

threads, and any other state.

In order to do some computational work in the isolates, a method needs to be invoked, but in a

different way. It is different since we are invoking the method in one isolate and executing it in another

isolate. These isolates have different heaps, so we cannot pass Java objects as arguments directly. This

way, we will need to copy the objects that we need from the calling isolate to the execution isolate. The

same thing happens with the return value. In order to copy the objects, we will have to use handles.

Handles are an opaque indirection to a Java object and the object they refer to can only be accessed

in the isolate in which the handle was created. The @CEntryPoint annotation marks the method as

isolate-transition, i.e. a method that is going to be executed in a different isolate. That isolate has to be

passed as an argument with the @CEntryPoint.IsolateThreadContext annotation. To return the result

we will have to create an ObjectHandle object in order to copy the result to the source isolate, so, if

there is any result to be returned, we should pass the source isolate as an argument as well.

30



Here is an example of the method signatures that would be needed to use a new isolate to perform a

concatenation of two strings. The concat method would be called inside the concatInIsolate method

after copying the strings from the source isolate to the target one. The copyString methods will create

the handle to copy the string. The first method, the one without the annotation, is going to run in

the source isolate and will transform the Java String object to a C string (CCharPointer). The second

method, the one with the @CEntryPoint annotation, is going to run in the target isolate and will transform

the C string into a Java String object.

1 public class StringConcat {

2

3 public String concatInIsolate(

4 String s1,

5 String s2);

6

7 @CEntryPoint

8 private static ObjectHandle concat(

9 @CEntryPoint.IsolateThreadContext

10 IsolateThread targetContext,

11 IsolateThread sourceContext,

12 ObjectHandle s1Handle,

13 ObjectHandle s2Handle);

14

15 private static ObjectHandle copyString(

16 IsolateThread concatContext,

17 String sourceString)

18

19 @CEntryPoint

20 private static ObjectHandle copyString(

21 @CEntryPoint.IsolateThreadContext

22 IsolateThread renderingContext,

23 CCharPointer cString);

24

25 }
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5.3 Network namespaces

The network namespace implementation has two parts to it. The first iteration consists of creating,

setting up, using, and deleting a network namespace at each function invocation. Using a network

namespace means the invocation will not run in the default network namespace but in the created

network namespace.

5.3.1 Network namespaces native code implementation

The network namespaces implementation uses the Java Native Interface in order to be able to run native

code. There are 6 native methods registered that do the following:

• Create a network namespace

• Delete a network namespace

• Switch the current thread to network namespace

• Switch the current thread to the default network namespace

• Disable veths

• Enable veths

5.3.1.A Create network namespace native method

The create network namespace native method has 3 arguments, the name of the network namespace,

and the second and third bytes of the veths’ ip addresses. The method starts by creating the network

namespace. After creating the network namespace, it creates two veths. When a veth is created, it is

linked to the default network namespace by default, so after creating the veths it links one of the veths

to the created network namespace.

After linking one of the veths to the new network namespace, it is time to assign an ip address to each

of the veths. In our logic, each network namespace has an id which is an integer that is incremented

every time a new network namespace is created. Every veth ip will have the format 10.X.Y.Z/24, where

X is the whole division of the network namespace id by 256, the Y is the network namespace id modulus

256, and the Z is 1 if the veth is linked to the default network namespace or 2 otherwise.

After assigning an ip address to each of the veths, each one of them has to be enabled, since they

are disabled by default when they are created.

In order for a network namespace to have access to the internet, there are some steps needed. The

first is to use iptables nat masquerade to hide address translation, and then use iptables nat forwarding

to forward packets.
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5.3.1.B Delete network namespace native method

The delete network namespace native method has 1 argument, the network namespace name. It starts

by deleting the default network namespace veth associated with the request network namespace, fol-

lowed by deleting the requested network namespace.

5.3.1.C Switch to network namespace native method

The switch to network namespace native method has 1 argument, the network namespace name. It

switches the current thread to the requested network namespace.

5.3.1.D Switch to the default network namespace native method

The switch to the default network namespace native method has no arguments. It switches the current

thread to the default network namespace.

5.3.1.E Disable veths native method

The disable veths native method has 1 argument, the network namespace name. It brings down both the

default network namespace veth associated with the requested network namespace and the requested

network namespace veth. By bringing them down, the default network gateway of the requested network

namespace is deleted.

5.3.1.F Enable veths native method

The enable veths native method has 1 argument, the network namespace name. It enables the network

namespace veth associated with the requested network namespace and the request network names-

pace veth.

This method is supposed to be called after the disable veths method. As said before, after disabling

the veths, the default network gateway of the network namespace is deleted. So, in order to set the

network namespace back up, the default network gateway is set again.

5.3.2 Network namespace logic implementation

The network namespaces have their logic centered on a Java class called NetworkNamespaceProvider.

The resulting object of this class provides methods that call the native methods mentioned above. It has

complete autonomy over which names to give to new network namespaces. There is also a class called

NetworkNamespace that contains relevant information about a network namespace.
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The network namespace implementation had two iterations. The first iteration consists of creating,

setting up, using, and deleting a network namespace at each function invocation. Using a network

namespace means the invocation will not run in the default network namespace but in the created

network namespace.

There are two possible ways to use Native Image Isolates in an invocation: reuse a cached isolate

and create and delete one isolate for each invocation. We considered the network namespace utilization

in both of these options, although we are only interested in the Native Image Isolates cache option.

5.3.2.A Creating a network namespace at each function invocation

In this approach, the network namespace provider keeps track of how many network namespaces have

already been created. Whenever a new network namespace is created, it increments that variable and

that number becomes the id of that new network namespace.

This approach added a significant overhead in terms of latency since the time to create a network

namespace and delete it takes some hundreds of milliseconds. Because of this, we had to think of

another possibility that could add minimal overhead to invocation latency.

5.3.2.B Network namespaces cache

As we will present further in this document, switching to a new network namespace and switching to the

default network namespace takes around dozens of microseconds, which is pretty fast.

In this iteration, considering this fact, we took advantage of having cached network namespaces.

In this case, the network namespace provider keeps track of the created network namespaces in a

thread-safe queue. New namespaces are added to the queue, and whenever an invocation needs a

network namespace, a network namespace is pulled from the queue. There is a command running

periodically that manages the network namespaces. When it runs, it ensures there are at least 40

network namespaces and that there are no more than 800 network namespaces. So, if an invocation

needs a network namespace and there is not one available, it waits for this command to run and create

new network namespaces.

To reduce the overhead of creating network namespaces in the middle of the invocations, before

launching the Graalvisor webserver that handles function registration and invocation, network names-

paces are created. The number of network namespaces created is configurable. After creating the

network namespaces, the command that manages them is set to run periodically and then the web-

server is launched.

When invoking a function without isolate caching, we get an available network namespace and switch

to that network namespace before actually invoking the function. After the invocation, we switch back to
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the default network namespace, free the network namespace, and add it back to the queue so it can be

reused later.

In the Native Image Isolates cached option, every time we create an isolate, we start by getting an

available network namespace, and this network namespace gets attached to the isolate. We switch to

the network namespace we just got and then we perform requests in this cached isolate. After some

time in idle, this isolate will be destroyed, but before that, we switch to the default network namespace,

free the network namespace attached to the isolate, and add it back to the network namespaces queue.

5.3.2.C Network isolation configuration

The network isolation is configurable. It can be enabled or disabled with the lambda network isolation

environment variable, and, as stated in the previous subsection, the number of network namespaces

created on Graalvisor initialization is configurable with the lambda initial network namespaces envi-

ronment variable.
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6
Evaluation
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6.1 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.4 Evaluation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

In this chapter, we will present how we measured the impact of adding network isolation to the

Graalvisor system. We will present the workloads we used, the metrics we have extracted, what are the

experiments we ran, and finally the results.

6.1 Workloads

We chose three workloads that were used in Photons: a simple Hello World function, a File Hashing

function, and a Video Processing function. These workloads represent different parts of the application

spectrum in terms of resource utilization.

• Hello World function: A simple function that returns the String ”Hello World” in the output;
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• File Hashing function: A function that receives as argument a URL, pointing to a file. Using

the Java MessageDigest class, it hashes the file using the MD5 algorithm and returns the hash in

hexadecimal base. This workload is mixed on resource utilization since it downloads an input file

and then uses CPU in order to hash the file;

• Video Processing function: A function that receives as arguments 2 URLs, one pointing to an

mp4 video, and one pointing to a ffmpeg file. It uses the FFmpeg library in order to reduce the

resolution of the video. This workload is CPU-bound.

6.2 Metrics

The metrics we extracted in order to evaluate our system with the network namespaces integration are

latency, throughput, and memory footprint.

• Latency: We want to measure the latency in order to see if the use of network namespaces delays

in any kind the execution time of a function;

• Throughput: We measure throughput to see how the function’s requests per second are affected

using network namespaces;

• Memory footprint: We also measure the memory footprint in order to see if using network names-

paces introduces high memory usage.

6.3 Experiments

We ran three experiments with Native Image Isolates cache in order to evaluate our system. The exper-

iments were run the workloads in:

a) A system without network isolation;

• We want to measure the latency time on a system without network isolation to serve as a

base to compare to the other experiments and see if they add any overhead;

b) A system with network isolation and network namespaces cache;

• This is the second iteration of the implementation, so used it as an experiment to compare it

with the baseline;

c) A system with network isolation and without network namespaces cache;

• As one of the implementation iterations was creating a network namespace for each request,

we used it as an experiment in order to compare it with the baseline experiment.
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Figure 6.1: Average execution time (ms) for each network namespace operation.

6.4 Evaluation environment

The experiments were conducted in a Linux Ubuntu 22.04.3 LTS machine, with 16GB of RAM and

the 11th generation Intel i7-1165G7 processor with 8 cores and 2.80GHz. Results were processed in

different ways. The latency is the average latency of all requests performed, the throughput is the total

number of requests divided by the benchmark total execution time, and the memory footprint is the

average of the last ten records of memory utilization. The experiments were executed in different levels

of concurrency in order to see how concurrency affects the use of network namespaces.

6.5 Results

In this section, we will present the results of the network namespace operations, followed by the latency,

throughput, and memory footprint overheads on the different workloads. The Video Processing workload

is a lot heavier than the other two, so the results on this workload were performed with concurrencies

1 and 2 instead of 1, 2, 4, and 6 like in the other workloads. All these experiments were done using

cached Native Image Isolates.

6.5.1 Network namespace operations overhead

We started by measuring the execution time of network namespace operations such as creating a net-

work namespace, deleting a network namespace, freeing a network namespace, switching to a network

namespace, and switching to the default network namespace. We can see this represented in Figure
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6.1.

Creating a network namespace takes around 180 milliseconds, which is a huge number and adds

overhead to functions that perform really low latency operations.

Despite not having a number as high as the create operation, the delete network namespace op-

eration still has a significant execution time of around 23 milliseconds. This execution time can add

overhead to the same functions that the create operation affects.

The free network namespace operation also has a considerable execution time of around 78 millisec-

onds. It is still a high execution time and can also affect the same functions of the previous operations.

Both switch to network namespaces operations have less than 0.1 milliseconds of execution time,

which adds minimal overhead to the functions’ latency.

6.5.2 Latency overhead

After measuring the network namespace operations execution time, we ran all the experiments in the

different workloads and extracted the average latency of a request. These values are presented in

Figures 6.2, 6.3, and 6.4.

6.5.2.A Latency overhead in the Hello World workload

In the Hello World workload, there is almost no overhead when comparing the experiment without net-

work isolation with the experiment with network isolation and network namespaces cache. This minimal

overhead happens because we are using network namespace caching (network namespaces were pre-

viously created). A network namespace gets attached to a cached isolate, and the only network names-

pace operations performed are the switches between network namespaces, which have a low execution

time.

On the other hand, the experiment with network isolation and no network namespaces cache has

really high latency compared to the other experiments. It can be explained due to the fact that, in

this experiment, at every invocation, a new network namespace is created, both switches between

network namespaces are performed, and, in the end, the network namespace is deleted, and these

execution times are really high compared to the Hello World function’s execution time. If we sum these

operations’ execution times from Figure 6.1, we get close to the latency overhead at concurrency 1. As

the concurrency gets higher, the overhead increases, this is due to Kernel locks performed in network

namespace operations which actively increases the execution time.

40



Figure 6.2: Average latency (ms) per request on all experiments for the Hello World workload.

6.5.2.B Latency overhead in the File Hashing workload

Similar to Hello World, the File Hashing workload shows the same minimal overhead in the experiment

without network isolation and the experiment with network isolation and network namespaces cache,

and the overhead added in the experiment with network isolation and no network namespaces cache as

the Figure 6.3 shows. These overheads are similar for the same reason as the Hello World workload, the

integration of cached network namespaces in cached isolates for the experiment with network isolation

and cached network namespaces, and the overhead added by the network namespace operations in

the experiment without network isolation.

6.5.2.C Latency overhead in the Video Processing workload

As we can see in Figure 6.4, this workload is a lot heavier than the others. The latency overhead in this

case is a lot smaller since the function invocation latency itself is now much higher than the overhead

brought by the network namespace operations. However, we can see that the network namespace

operations in the experiment with no network isolation still add an overhead compared to the other

experiments.

6.5.3 Throughput overhead

In this section, we measure how the network isolation impacts the throughput of the workloads, i.e. the

number of requests per second.
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Figure 6.3: Average latency (ms) per request on all experiments for the File Hashing workload.

Figure 6.4: Average latency (ms) per request on all experiments for the Video Processing workload.
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Figure 6.5: Throughput (requests per second) on all experiments for the Hello World workload.

6.5.3.A Throughput overhead in the Hello World workload

As Figure 6.5 shows, introducing network isolation with cached network namespaces added minimal

overhead to the throughput. On the other hand, having network isolation without cached network names-

paces added a huge overhead. As already explained in the latency section, this happens because the

network namespace operations, such as the create and delete, have a high execution time compared to

the Hello World function’s execution time.

6.5.3.B Throughput overhead in the File Hashing workload

The throughput overhead in the File Hashing workload is very similar to the Hello World workload

throughput, as it can seen when comparing Figures 6.5 and 6.6. The Hello World function and the

File Hashing function have similar execution times, so it is expected that the overhead of adding network

namespaces is very similar on both functions.

6.5.3.C Throughput overhead in the Video Processing workload

In the Video Processing workload, the throughput overhead is not so evident. As we can see in Fig-

ure 6.7, throughput values are very alike compared to the other experiments. In contrast with the

Hello World and File Hashing functions, the overhead of performing the network namespace operations

with the highest execution times in the Video Processing function becomes almost absorbed because

the function’s execution time is around seven times higher than the network namespaces operations

altogether in the experiment with network isolation without cached network namespaces.
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Figure 6.6: Throughput (requests per second) on all experiments for the File Hashing workload.

Figure 6.7: Throughput (requests per second) on all experiments for the Video Processing workload.
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Figure 6.8: Memory footprint (MB) on all experiments for the Hello World workload.

6.5.4 Memory footprint overhead

The memory footprint overhead in the different workloads can be seen in Figures 6.8, ??, and ??. It is

common in all the workloads having a higher memory usage in the experiment with network isolation and

without cached network namespaces. This is also expected, because creating a network namespace will

involve create a network namespace object in our code and a new object is created at every invocation.
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Figure 6.9: Memory footprint (ms) on all experiments for the File Hashing workload.

Figure 6.10: Memory footprint (MB) on all experiments for the Video Processing workload.
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7
Conclusion

In this project, we aimed to virtualize the network of Function-as-a-Service applications that run in the

same runtime environment without adding any kind of performance issues.

In order to achieve this goal, we used network namespaces in order to isolate the network of different

function invocations. We also took advantage of integrating the network namespaces in Graalvisor

project, which is built to serve function invocations. It already has the advantage of using Isolates to

isolate the memory heap and also the advantage of using JNI to be able to run native code.

Our project was tested by running 3 different workloads in 3 different experiments with different levels

of concurrency. From this testing, we collected some metrics such as latency, throughput, and memory

footprint.

We can conclude that, from the two iterations proposed in the implementation section, the most

viable is the implementation that user network namespaces cache. The first iteration, the one that has

no network namespaces cache, is not viable for workloads where the request latency is very low. On

the other hand, for workloads with higher latency, the overhead is less visible. In terms of throughput, it

is similar to the latency comparison. In terms of memory, it uses a lot more memory which makes it not

viable as well. The second iteration, the one that has network namespaces cache, is viable for both low

and high-latency workloads. It also adds almost no overhead in terms of throughput, and the memory

utilization is basically identical.
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We could not find any programmatic interface to manage network namespaces, so, in future work,

we will try to create one programmatic interface that will help us with network namespace management.

We also could not build a Java Shutdown Hook in order to delete the network namespaces when the

application ends, so, in future work, we will also work on that. As a more complex future work, we will

try to find a way to share network namespaces across different functions and also find a way to clean

network namespaces efficiently, since this implementation adds significant overhead to functions that

perform low latency operations.
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