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Abstract

Microservices have become a popular architecture style for building large
scale distributed systems. Compared to the monolithic approach, they
offer several benefits. Some of these are, e.g., being loosely coupled,
technologically flexible, and comparably easier to scale. However, one
major problem with JVM-based microservices is the lengthy warm-up
times. GraalVM Native Image tries to solve this problem through efficient
AOT-compilation of JVM-based applications. However, being still a rather
new tool within the Java-ecosystem, it has a lot room for improvement. To
further improve upon the latency and throughput of microservice-based
applications, we show how the Runtime Object Lifetime Profiler (ROLP), a
profiler tracking the lifetimes of frequently allocated objects, can be used
in combination with the GraalVM Native Image. Throughout the thesis,
we present the functionality of ROLP and how it manages to improve the
dynamic memory management decisions for the Native Image runtime.
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Chapter 1

Introduction

Nowadays, the use of microservices is popular for building large scale
distributed systems [33]. Compared to the monolithic approach, they
offer several benefits. Some of these are, e.g., being loosely coupled,
technologically flexible, and comparably easier to scale. Nevertheless,
being an architecture style consisting of lightweight communicating
services, there are problems which need to be addressed. For JVM-
based microservices, those issues mainly fall under memory footprint and
lengthy warm-up times [22, 39].

Since many microservice-based applications are built using JVMs, they
are prone to spend a lot of time in the warm-up phase of the JVM [39].
The warm-up phase of a JVM-based application is the time between
the startup (execution speed here is low), and until the steady peak of
performance is reached [3]. The warm-up phase of a JVM has to perform
a fair amount of work during runtime. This amounts to identifying
and loading the necessary classes, identification of "hot" code (addressed
further in Section 1.3), code verification and alike [39]. These mechanisms
lead often to a "cold" start for microservices, which in turn increases the
warm-up times and leads to higher memory footprint. The warm-up time
is a crucial aspect to tackle for microservices, especially since they often
can have short life cycles [39]. By reducing the time spent in the warm-up
phase, the overall system can minimize delays and avoid breaking service-
level agreements (SLAs).

GraalVM Native Image [39] is a common tool for development of mi-
croservices. It provides a lot of mechanisms looking to optimize both
application performance (AOT-compilation) and workflow (polyglot pro-
grams). When it comes to the issue of warm-up time, the GraalVM
Native Image aims to reduce high-memory footprint and slow warm-up
times through smart AOT-compilation1 [39]. Microservices built using the

1AOT-compilation is the compilation of a high-level language to native machine code.
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GraalVM Native Image have been shown to have 50 times faster start-
up, and 5 times lower memory-footprint compared to JVM-based solu-
tions [30]. However, the issue which arises with GraalVM Native Image is
that performance related to throughput and latency can become compar-
ably worse to modern JVMs given enough execution time [36]. To close
this gap, we introduce the Runtime Object Lifetime Profiler (ROLP).

ROLP [9] is an object profiler, tracking object lifetime information and
propagating it to the garbage collector (GC). By identifying objects with
different lifetimes, ROLP can inform the GC to allocate objects in separate
memory-bound locations. This is known as pretenuring, which we
explain in more detail in Section 2.4. This, in turn, reduces object
copying and promotion, both of which have been shown to produce long
application pause times and have a negative throughput impact [6].

On one hand, ROLP was first evaluated and integrated with the open-
source garbage collector NG2C [8] for OpenJDK 8, and has shown
to drastically reduce long-tail latencies of distributed big data applica-
tions [9]. On the other hand, the Native Image runtime provides a rudi-
mentary garbage collector implementation with no object pretenuring. By
integrating ROLP into the Native Image runtime, we show that the per-
formance of microservices built using the GraalVM’s Native Image is im-
proved in regards to memory management decisions. A result of improv-
ing the GC memory management decisions is the increase in throughput
and lower latency for applications built using ROLP.

1.1 Objective

In this thesis, we propose ROLP for improving the throughput and
reducing the latency of microservice-based applications built using the
tool provided under GraalVM known as the Native Image [39]. This
is done through the use of ROLP [9], which propagates object lifetime
information enable smart dynamic memory management decisions for the
native runtime.

ROLP is integrated into the Native Image runtime known as SubstrateVM.
Since the applications we will be working on are AOT-compiled to
executables known as native images, a number of issues are investigated.
These are related to the fact that we are dealing with applications compiled
to executables and that the internal GC algorithm of SubstrateVM will
require modifications to work with pretenured objects. This is covered
in more detail below (see Section 1.3).

Our implementation of ROLP for Native Image is evaluated showcasing
improvements in the application latency and the overall throughput. The
evaluations from the experiments are covered in Chapter 6.

4



1.2 Requirements

The requirements of the new ROLP + Native Image version are as follows:

• accurate pretenuring of objects in correlation to their allocation site
and lifetime;

• good throughput during application execution in comparison to a
native image built without ROLP;

• low response time during application execution in comparison to a
native image built without ROLP.

1.3 Difficulties

The GraalVM project provides several different tools such as the GraalVM
Compiler [31], GraalVM Native Image Builder [39] and the Truffle
Language Implementation Framework [27]. In this thesis we are focusing
mainly on the Native Image Builder. Native images can be built using all
of the JVM-based languages such as Java, Scala, Clojure and Kotlin [39].
The native images can also be built using languages supported by the
Truffle Framework. Modifying ROLP to include support for Truffle-based
languages is outside the scope for this thesis. However, implementing
support for dynamically typed languages can be explored in future work.

The implementation of ROLP for GraalVM Native Image has some
challenges that are addressed during the course of this thesis. In the
initial work proposing ROLP, only objects which are allocated under JIT-
compiled code are profiled. Since native images are AOT-compiled, we
have adapted our solution to profile almost all object allocation which
occur. The details for how we profile objects and deal with object
allocation is covered in Chapter 4.

We have also extended the current native GC of SubstrateVM, since
the current garbage collection algorithm does not deal with object
pretenuring. This is due to the fact that the GC will need to take advantage
of the lifetime information provided by ROLP. This in turn requires some
modifications to the internal GC such that it can pretenure long-lived
objects.

1.4 Thesis Overview

The rest of this thesis is organized as follows.

Chapter 2 briefly introduces the concept of a microservice, and how
it compares to previous similar architectures. We will also provide

5



background on GraalVM (especially the Native Image runtime), object
pretenuring and the profiling algorithm ROLP.

Chapter 3 presents the most relevant works which is related to the
problem of reducing GC times and improving throughput through object
pretenuring. The chapter is concluded with a condensed comparison of
the different algorithms.

Chapter 4 explains the general architecture of the proposed solution of
integrating ROLP with Native Image. We give a general overview of the
functionality of ROLP, and the main data-structures that come along with
it.

Chapter 5 provides a more in-depth look at the implementation of ROLP
with SubstrateVM. We start of by giving a overview of the tools used, such
as programming languages and build options. Then, we go into greater
detail about how we modify the compiler and the native runtime.

Chapter 6 presents and discusses the results from the evaluations of
running ROLP with Native Image.

Chapter 7 consists of the conclusion. Here we discuss if we have met
the requirements we have set, any relevant future work, and finish of by
summarizing what we have contributed.
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Chapter 2

Background

In this chapter we start of by presenting microservices, and in what ways
they diverge and relate to service-oriented architectures (SOAs). We then
introduce the issue of warm-up time for JVM-based microservices and
how it affects their performance. We show how the GraalVM Native
Image can be used to greatly mitigate issues related to warm-up time.
Before introducing object pretenuring, we give a general overview of what
a GC is. We present in detail the runtime of the Native Image and how it
manages memory. Finally, we introduce ROLP and give a brief overview
over its functionality.

2.1 Microservice-oriented architecture

Microservices are considered to be based on SOAs [19]. They are usually
lightweight, both in the size and functionality they provide. Some of the
aspects in which microservices differ from standard SOAs are that:

• they usually rely on lightweight protocols such as REST [29] and
HTTP [16] for communication, which eases integration with web
based applications;

• SOAs usually rely on enterprise software, whilst microservices are
often built using lightweight and open-source technologies;

• in addition, SOAs are used as an integration solution, whilst
microservices are used as bounded1 individual applications [19].

Microservices are loosely coupled, which allows them to be combined
to build complete distributed systems. Since they communicate using
common protocols, the technology used for creating the services can often
be chosen independently of the other services [19].

1Minimal amount of dependencies.
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Warm-Up Phase

Steady peak of
performance

Figure 2.1: Warm-up of long-running JVM-based applications.

The design of microservice-oriented architectures provide several benefits.
First, since they are lightweight and loosely coupled, working with them
can be rather flexible in terms of the technology used to develop them,
easing coordination for developers. In addition, the horizontal scaling
allows instances of services to be scaled up by demand [18]. Server costs
can also be comparably lower to a monolith solutions, given the right
environment [38].

Several prominent tech companies have adopted the use of microservice-
based systems. Netflix has adopted the use of microservices, by refact-
oring their monolithic solutions to microservice-style implementations.
The same goes for Amazon [35]. There are several reasons for migrat-
ing to microservice-oriented solutions for these companies. Some of these
are based on the benefits we have already mentioned: scalability, team
workflow, DevOps support, etc. [33]. However, a common issue with mi-
croservices is that the combination of being lightweight and on-demand
makes the cumulative time performing warm-up rather high, potentially
lowering overall throughput.

2.1.1 Warm-up time for Microservices

The warm-up time of microservices is a critical aspect to tackle, especially
in JVM-based services. In fact, if services were not delayed by the warm-
up phase, then the whole system might be able to scale up quickly without
breaking any potential SLAs. In our work, we consider the warm-up
time to be the period between the startup of the VM until steady peak of
performance is reached. Start-up time is the time until the first noticeable

8



Figure 2.2: Core projects of the GraalVM ecosystem.

operation by the application is performed. In Figure 2.1 we can see how
throughput over time for a JVM-based service might look. During the JVM
warm-up phase, the VM has to profile code such that frequently executed
code blocks are JIT-compiled. In addition, classes are to be loaded into
memory when the application demands it [39]. This leads to a so called
"cold" start, which can impend upon the overall performance of a system.
Utilities such as GraalVM’s Native Image aim to solve this.

2.2 GraalVM Native Image

GraalVM is an open-source2 JVM and JDK maintained and under
development by Oracle Labs. The GraalVM ecosystem consists of several
projects in which some of the core ones can be seen in Figure 2.2.
These are the GraalVM compiler [15], the Truffle Language Implementation
Framework [41] and the one which we will be focusing on during the course
of this thesis, the GraalVM Native Image [39].

Through the Native Image, GraalVM offers capabilities to improve the

2Excluding the enterprise edition.
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Figure 2.3: Peak performance of a REST service built on top of the
Quarkus microservice framework [39].

overall performance of microservice-oriented applications, especially by
targeting some of the crucial aspects for their optimal performance, which
is reduction of warm-up time and memory footprint. The Native Image
Builder produces a standalone executable known as a native image.
This is done by GraalVM through static analysis techniques involving
points-to-analysis, static code initialization, heap-snapshotting and AOT-
compilation [39]. In addition, languages built on top of the Truffle
Framework can also be compiled into the native image executable. This
allows the applications to utilize many different libraries and tools, and at
the same time ease developer coordination.

GraalVM Native Image can be already used with several different
Java microservice frameworks. Some of these frameworks such as
Quarkus [32], Spring [13], Micronaut [23] and Helidon [28] have already
builtin support for GraalVM Native Image. The services built using these
frameworks together with the Native Image provide benefits in terms of
reduction of warm-up time, memory footprint and allowing developers to
create service-based applications with a significant amount of tools.

2.2.1 Native Image Builder performance

Native Image offers impressive metrics when it comes to the reduction of
application warm-up time and memory footprint. For some applications
it has shown to have as much as a 50 time reduction in time spent
performing warm-up, and 5 time reduction in memory footprint3 [30]. In
Figure 2.3 benchmark results are presented for a JSON encoder/decoder,
built on top of the Quarkus framework. The results are presented in
Initialize Once, Start Fast: Application Initialization at Build Time, a work
describing GraalVM Native Image and its use cases [39]. We can see here
that the native image manages to reach a steady peak of performance

3The amount of memory referenced and used during application execution
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a fair amount of time before the corresponding HotSpot application.
Throughput during warm-up is also largely better. The reason for the dip
in the native image warm-up phase is because the runtime needs to claim
memory for usage, which initially induces a slight overhead [39].

However, when the service is long-running, a JVM-based solution will
outperform the native image given enough time. This can already be
seen in Figure 2.3, in which even though the native image manages
to stay fairly close to the HotSpot application, it still falls a slight bit
under. To bring the performance closer to JIT-compiled applications
a variety of techniques need to be employed. One of these which
come along with GraalVM is profile-guided optimization (PGO) [36,
39]. PGO functions as form of dynamic analysis, in which a sample of
a profiled run is analyzed, to improve the performance of subsequent
compilations of the same image. For some applications, it brings the
overall performance closer to a JIT-compiled version, but still can often fall
short of matching the performance [36]. In addition, PGO is only enabled
for GraalVM Enterprise Edition (GraalVM EE). To further improve upon
the overall performance of the Native Image Builder, one can utilize object
pretenuring (presented in Section 2.4).

2.3 Garbage Collection

Garbage collection is a dynamic memory management technique used
by a variety of runtimes to automatically handle memory management
decisions [20]. It was invented initially targeting Lisp, a dynamically
typed functional language [25]. Nowadays, most runtimes based on
high-level programming languages utilize some form of GC algorithm to
ease development effort and avoid the variety of issues which arise from
manual memory management [21].

A variety of GC algorithms exists, each of them bringing a set of
advantages and disadvantages in comparison to each other. The runtime
of Native Image utilizes a generational GC algorithm. Generational
GCs were first documented in the article Generation scavenging: A non-
disruptive high performance storage reclamation algorithm [37]. In generation
based GCs the heap is separated into memory-bound spaces. Two major
spaces are always included. These are the young generation and the old
generation4.

• Young generation is where newly allocated objects are placed into,
and is often referred to as the allocation space. The size of the young
generation is usually kept relatively small to the heap. The need for a

4These generations are further divided into from and to spaces. Covered in
Section 2.5.2.
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specific generation in which new objects are allocated into stem from
the so-called weak generational hypothesis, stating that most objects
tend to be short-lived, meaning most of them do not survive a single
collection [37]. Thus, by allocating all objects in one region one can
potentially avoid the majority of copying operations, with only a
minority of objects being promoted into the old generation. This
follows if most objects do behave accordingly to the weak generational
hypothesis. When the amount of objects allocated into the young
generation exceed its size, a minor collection is triggered. A minor
collection promotes objects from the young generation into the old
generation, leaving the unreachable objects behind for cleanup.

• The old generation takes up the remaining heap space, and is
often referred to as the survivor space. Here are all objects which
have survived at least a single garbage collection. When the old
generation fills up, a major collection is triggered. These collections
take substantially longer time compared to a minor collection. This
is due to the fact that major collections mainly only trigger because
of a full heap. During these collections, all reachable objects in the
old generation persist living. In addition, reachable objects are also
promoted from the young generation in the old generation (minor
collections are usually a part of the major ones).

The generational GC algorithm of the Native Image runtime is covered in
depth in Section 2.5.1.

2.4 Object Pretenuring

Object pretenuring is the identification of objects that survive multiple
collections (and are thus considered long-lived) [5, 11]. It can be utilized
in generational garbage collectors, in which objects can exist in different
memory-bound spaces. Objects identified as long-lived can be directly
allocated into the survivor space. Without pretenuring, such objects which
tend to survive a collection have to be promoted (copied) into the survivor
space.

The need for object pretenuring came after generational garbage collectors
became introduced. Pretenuring was first described in Generational stack
collection and profile-driven pretenuring [11]. The authors managed to show
that by identifying long-lived objects and placing them directly in the
survivor space, one can prevent copying from the allocation space. This in
turn reduces latency by reducing the time spent doing collections.

There are several techniques for pretenuring which require to be adapted
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for specific run-times. Tracking of object lifetime5 can either be performed
either through online or offline profiling. Which one to use depends on
what one is willing to sacrifice in terms of profiling overhead and accurate
object lifetime information. We present related works dealing with either
techniques in Chapter 3.

2.4.1 Offline Profiling

During offline profiling, long-lived objects need to be identified during an
application sample run without pretenuring enabled. There are several
ways to accomplish this. One can analyze the heap after execution, or
modify an application to produce lifetime statistics. After analyzing the
information gained, one can now instrument the application to allocate
certain objects in specific generations. The main problem which arises
from offline profiling is that it might not be adaptable for applications
with very dynamic control-flows. If an allocation pattern for some objects
suddenly change during the run in which pretenuring is enabled, it cannot
be identified. Using faulty pretenuring information could lead to memory
fragmentation and scanning for already dead objects, which in turn leads
to substantially higher collection times.

2.4.2 Online Profiling

Online profiling requires that the identification of long-lived objects
happens during the same application run as the pretenuring will occur.
A variety of techniques can be used to identify which code sections
to monitor. Allocation sites to profile can be identified during the
compilation of the application, since allocations are often denoted in
some shape (such as AST nodes). Furthermore, one can annotate specific
code blocks to monitor in which significant allocations occur. To reduce
profiling overhead, one can often reduce the profiling of allocations to JIT-
compiled code [9]. These techniques need to be weighted against what
one is willing to sacrifice in terms of lifetime accuracy and overhead.
Nonetheless, the main issue which often arises from online profiling is the
overhead the profiler induces. With profiling one needs to find a balance
between when to profile, and when to use the gathered statistics. The
benefit here is that if some runtime metric indicates that an allocation
pattern has changed (e.g. sudden increase in GC pause times) one can
turn on profiling to identify new lifetime statistics.

5We consider lifetime to be the amount of collections an object has survived. A newly-
allocated object is of age 0.
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2.4.3 Pretenuring Collector NG2C

NG2C (N-Generational Garbage Collector) is the underlying GC initially
utilized by ROLP [9]. It was first documented in the article NG2C:
Pretenuring Garbage Collection with Dynamic Generations for HotSpot Big Data
Applications [8]. It can be considered a pretenuring collector, as it managed
to leverage the information from object profilers for pretenuring. NG2C
was initially evaluated with a predecessor version of ROLP known as
Object Lifetime Recorder, which functioned as an offline profiler. When
integrated together with ROLP, it was shown to reduce long-tail latencies
for several notable open-source distributed benchmarks.

When using NG2C, a user set number of dynamic generations can
be preconfigured. This is different from the standard young and old
generations, which already exist in the HotSpot runtime. By having
multiple dynamic generations, objects can be more efficiently grouped.
These spaces are referred to as dynamic since they can grow and decrease
in size, in correspondence to the amount of objects that occupy them.
Threads can be bound to a specific generation, which allows for parallel
allocation. By utilizing multiple dynamic generations, objects can be
allocated in their age corresponding space.

NG2C was originally developed with Object Lifetime Recorder (OLR), a
profiler developed together with NG2C, which allows NG2C to allocate
objects according to their lifetimes. In the article Runtime Object Lifetime
Profiler for Latency Sensitive Big Data Applications [9], an implementation
of ROLP is integrated with NG2C to provide even more accurate lifetime
information. This is due to the fact that ROLP, in distinction to OLR, is an
online profiler. If no profiler is used, the developer has to annotate object
allocations with the predicted lifetimes.

We mention NG2C since the modifications we make to the Native Image
GC can be considered a simplified version of the pretenuring collector,
since we only work with two generations, the young and the old one.

2.5 SubstrateVM

SubstrateVM is the runtime behind the GraalVM’s Native Image. We now
present the dynamic memory management techniques it uses and the heap
model of the runtime.
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2.5.1 Serial GC

The default GC for both GraalVM commercial edition and EE is Serial GC.
It is a simple generational, non-concurrent, non-parallel, stop-the-world6

garbage collector optimized for small heap sizes [26]. Since it works
on a single-thread, it is not preferred for parallel applications. Native
Image provides a fair amount of runtime/build options which allows the
developer to tweak the GC behaviour according to their needs.

As mentioned in Section 2.3, Serial GC functions as a generational GC. It
contains two major generations, the young and the old one. By default,
no objects are placed directly into the old generation. Serial GC does
not implement any form of object pretenuring. All objects are directly
allocated into the young generation, and then potentially promoted to
the old generation. Objects within the old generation which subsequently
survive any further collections remain in the old generation.

Before discussing the GC algorithm and heap model of Serial GC any
further, we must briefly mention that the version of GraalVM we are
extending (20.3.0) implements a second garbage collection algorithm
known as G1 GC [14] which can be enabled for the Native Image on certain
platforms. We do not focus on G1 in this thesis due to the fact that it is only
enabled for the enterprise edition of GraalVM. In addition, the garbage
collector NG2C is an extension of G1, and has already been evaluated with
ROLP for the Java HotSpot VM [9].

2.5.2 Cheney’s algorithm

The collection algorithm used by SerialGC is an adapted implementation
of the Cheney’s algorithm [10]. In this algorithm, the heap is divided into
two spaces, known as the from-space and the to-space. The from-space
is where objects are allocated into. Since this is the allocation space,
objects can be allocated in such a way in which memory might become
fragmented (due the varying size of objects). Thus, when a GC takes
place, reachable objects are copied into the to-space making sure that there
will be no memory fragments. At the end of the collection, the to-space
becomes the new from-space.

This object copying extends each original object in the from-space with a
so called forwarding pointer. The forwarding pointer informs the GC if
the object has a copy of itself in a chunk in the to-space. These objects
are in addition marked with a forwarding bit, indicating that they do
not need to be scanned through again (when looked for references to
other objects). The benefits of the Cheney’s algorithm is that it minimizes
memory fragmentation, and only needs to keep track of the survivor

6A GC which halts program execution until the collection is finished.
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Figure 2.4: Tri-mark coloring for objects in Serial GC.

objects. Dead objects are left behind in the from-space, such that we
remain with only reachable objects in the to-space.

In SubstrateVM, since we have two generations, these need be divided
into from and to-spaces. The young generation contains a single space
known as the eden space, which functions as a from-space.7 The old
generation is equally divided into old from-space and old to-space. During
minor collections, reachable objects are promoted from the eden space to
the old to-space. During major collections, reachable objects both from the
eden space and the old from-space are promoted into the old to-space. At
the end of a collection the old to-space becomes the old from-space.

2.5.3 Reference scanning

In addition to utilizing the cheney-scan algorithm, Serial GC uses the tri-
marking [20] color abstraction to denote if objects are reachable or not.
Objects are denoted as either black, white or grey. The color correspond to
the liveness of the objects.

• All objects are initially considered as white (besides the object
references on the program stack and the image heap, which are

7It is further possible to divide the eden space into several buffer survivor spaces. This
is not considered in this thesis.
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always initially considered as grey). Objects at the end of the
collection which are white are considered unreachable (dead).

• Black objects are those that are considered live at the end of the
collection. These are objects within the image heap, stack and the
to-space at the end of the collection.

• Grey objects are those which are reachable (live) but have not been
scanned for references. Grey objects can become black if all of their
references are also scanned. The scanning of grey objects is where a
significant amount of time is spent for a collection in Serial GC (up to
99% of total collection time in some cases, since this is where copying
takes place).

Collections always begin by marking objects which are guaranteed to
be alive. These are objects which either exist on the image heap or the
program stack. These are the objects we have denoted in the top set
in Figure 2.4. References that have been found through the top set are
considered reachable and thus denoted as gray. This is the set below
the root set. These gray objects are then promoted into a to-space, and
their reachable references will be added to the workset of objects to be
scanned. At the end of the scanning, if any objects remain in the from-
space (G and J in in Figure 2.4), they are considered dead (white). The
space which these dead objects occupy is consumed and either claimed by
the operating system or reused by Serial GC as future chunks of memory.

2.5.4 Heap Chunks and TLABs

The spaces which are used in SubstrateVM’s heap model consist of heap
chunks. These are (by default) of 1024KB, and contain a continuous
segment of virtual memory dedicated to objects. The spaces contain a
collection of heap chunks formed as a linked list, with the tail chunk
being the latest one. These chunks are categorized as either aligned or
unaligned.

Aligned heap chunks can hold multiple objects continuously. The objects
can be mapped to their respective parent heap chunk. For an aligned heap
chunk, an object promotion happens with the object being moved from the
parent heap chunk to a target heap chunk in a old to-space.

Unaligned heap chunks can hold one large object (in Serial GC only large
arrays), and thus all unaligned heap chunks are allocated through the
slow-path (how allocation paths work for both type of chunks is described
in the following paragraph). Since they only contain one object, the whole
heap chunk is moved during promotion.

A GC is triggered based on the amount of heap chunks we have allocated
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since last GC (which is in relation to how many objects have been
allocated since a GC). New heap chunks can be generated during on object
allocation. An object allocation can go through two paths:

• The fast-path, in which an object is allocated directly into a heap
chunk using the offset value in the chunk known as the top. The top
of the heap chunk is the current memory address in which the object
will be allocated into. If sizeof(obj) + top is not beyond the offset
value which is the end of the chunk, we allocate the object. This
functions as a form of bump-pointer allocation, which is relatively
inexpensive and tries to waste minimal memory space (and therefore
perceived as the fast-path).

• If the object allocation would cause the heap chunk’s new top to be
higher than the end of it, we go through the slow-path. This means
that a heap chunk does not have enough space for the object, and
we either need to allocate a new one or retrieve one from a free-
list of unused chunks. After a new heap chunk is generated, we
perform bump-pointer allocation on it for the new object. After
enough slow-path allocations a collection will trigger. Right before
the collection has begun scavenging for live objects, the chunks are
assigned (flushed) to a space depending on their parent Thread-
Local Allocation Buffer (TLAB).

TLAB covers a region of heap chunks within the allocation space in which
allocations can occur. When a new chunk is assigned to a TLAB (due to
the slow-path), it will become the active allocation chunk for the specific
TLAB. The TLAB keeps track of all of the chunks assigned to it as a linked
list until a collection is triggered. When a collection is triggered, the
chunks are flushed from the TLAB and assigned to a space. Serial GC
contains a single TLAB which points to the eden space.

2.5.5 Card and First Object Table

Serial GC has two types of collections, incremental (minor) and complete
(major). Incremental collections are responsible for collecting and
promoting objects in the young generation, whilst complete collections
perform the equivalent for both the young and old generation. Since an
incremental collection takes care of objects that have references which can
be followed into the young generation, the scanning algorithm has to take
regard for objects in the old generation which point to objects in the young
one. A naive approach would be to scan through the live roots in the old
generation, and by following those references promote young generation
objects into the old generation. Serial GC handles this more efficiently
through data-structures known as Card Remembered Set Table and First
Object Table (FOT).
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Figure 2.5: References in the young generation from the old
generation being tracked through card tables.

Instead of scanning the entire old generation for references to the young
generation during incremental collections, the Card Table summarizes
which memory regions in the old generation can contain references to the
young generation. Serial GC does this by setting a dirty byte in a index in
the card table. We can see this in the bottom of Figure 2.5, in which two
dirty bits are set for the card table. This in turn informs an incremental
collection to scan the old generation memory regions of objects A1 and
A3. During these scans, references to objects B1 and B2 will now be found
and promoted to the old generation. The regions containing A2, A5 and
A6 are not necessary to scan since the card table indicates they do not hold
any references to the young generation. In Serial GC the regions to scan
for consist of a default size of 512 bytes each.

The FOT simply allows the header of the first object in the dirty region to
be located instantly instead of being scanned through from the beginning.
The header of an object consists of a remembered set bit if it could hold
a reference to an object in the young generation. In Figure 2.5, the FOT
would point to objects A1, A2, A3 and A5 given they are the first objects
in their region. The card table and FOT are embedded into each heap
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Figure 2.6: Object header in HotSpot with ROLP [9].

chunk. Unaligned chunks contain only the card table.8

Mentioning these mechanisms is relevant since our implementation of
ROLP will be moving objects directly to the old generation. This requires
us to modify object headers and declaring the FOT of each new object. The
implementation of how we take care of these kind of objects is covered in
Section 5.4.2.

2.6 Runtime Object Lifetime Profiler

ROLP was initially presented in the article Runtime Object Lifetime Profiler
for Latency Sensitive Big Data Applications [9]. The goal was to improve GC
pause times through online object lifetime profiling, which then is allows
objects to be allocated more efficiently. The garbage collector leverages the
lifetime statistics from the profiler to decide if objects should be allocated
in a different allocation space.

It was originally developed for OpenJDK 8, Java HotSpot VM, and
combined with the open-source collector NG2C [8], which leveraged
the profiling information to allocate objects in one of the preconfigured
allocation spaces. The results in the article show large reductions in
long-tail latencies in several open-source benchmarks, with minimal
throughput and memory overhead [9].

ROLP introduces several techniques for object profiling. The profiling
is performed online, such that it can adapt to the execution of the
application. To uniquely identify and group together objects, it uses their
corresponding allocation site. The allocation site is an identifier for where
an object allocation occurs in the application code. It is translated into a
2-byte number embedded in to each profiled object’s header.

Furthermore, to be able to distinguish objects which have the same
allocation site but different allocation paths, a 2-byte number denoting the

8Due to only containing one object which is always aligned after the card table field.
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thread stack state (TSS) is used. It is embedded together with the allocation
site in the object header. The object header for the HotSpot version of
ROLP can be seen in Figure 2.6. The allocation site ID and TSS are both
taking up unused space in the object header, thus not affecting the size of
the profiled objects. The age field which we seen within the header is also
updated by the collector. For keeping track of the lifetime statistics, an
Object Lifetime Distribution Table (OLD table) is utilized.

2.7 Summary

In this chapter, we have presented why GraalVM’s Native Image is util-
ized in the development of microservice-oriented architectures. Further-
more, we introduced how object pretenuring can be utilized to reduce the
amount of work done by generational GC algorithms. We gave an in-
depth look on how the Native Image GC algorithm works, together with
the heap model. Finally, we gave an overview of ROLP’s functionality. In
the next chapter, we will discuss related work which been done in regards
to object pretenuring.
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Chapter 3

Related Work

In this chapter we outline similar work which has been done in optimiza-
tion of microservices and other distributed systems, particularly through
object lifetime profiling and pretenuring. We first introduce the first pa-
per which presented work related to object pretenuring for generational
garbage collectors. We then present POLM2 [8], the offline predecessor of
ROLP. Next, we discuss related work done in terms of object pretenuring,
and what shortcomings they have compared to ROLP. A table providing
condensed comparisons for the different works is presented at the end of
the chapter.

3.1 Generational stack collection and profile-
driven pretenuring

Object pretenuring was initially introduced in the paper Generational stack
collection and profile-driven pretenuring [11]. This paper introduces mainly
two techniques. Generational stack collection, which is mainly relevant
for functional languages, and thus not discussed in this work. For
generational garbage collection it introduces object pretenuring. In much
the same way as ROLP, objects are profiled through an allocation site.
Objects which survive enough collections into a survivor space become
targets for pretenuring. This means that these object are directly allocated
into the survivor space.

Since this is the initial work introducing object pretenuring, several
limitations are present. First of all, the solution is offline. The heap profile
is scanned after running the application. Applications are also modified to
produce lifetime statistics for each object. Then, the gathered statistics are
used to determine which objects should be pretenured. The programmer
has also to declare which sites to profile, which can be cumbersome
for large projects. Objects allocated through particular allocations sites
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are grouped to have the same lifetimes, with no consideration for the
path taken to allocate them. In addition, since the solution works
offline, applications with highly variable control-flows can lead to faulty
pretenuring of objects.

3.2 POLM2

In the article POLM2: Automatic Profiling for Object Lifetime-Aware Memory
Management for HotSpot Big Data Applications [7]. an offline profiler referred
to as POLM2 is introduced. It is integrated with the pretenuring collector
NG2C [8] for OpenJDK 8, HotSpot JVM.

POLM2 functions through four main components. These are referred to
as Recorder, Dumper, Analyzer and Instrumenter. The components function
through different phases which it defines as profiling and production. A
short description of the phases with their corresponding components:

• Profiling occurs during the analysis of the sampled run and consists
of the components;

. Recorder which monitors object allocations, and uniquely iden-
tifies the allocation sites.

. Dumper which receives a call from the Recorder to produce a
heap snapshot of the JVM-heap.

. Analyzer, which together with object allocation information and
corresponding allocation sites from the Recorder, in addition
to heap snapshot from the Dumper, can then produce lifetime
statistics for each of the allocation sites.

• After profiling, we have the production phase.

. It consists of a single component, Instrumentation. Here the
the bytecode of the subsequent compilation of the application
is rewritten such that objects are pretenured according to the
lifetime statistics gathered from the profiling phase.

POLM2 suffers from the same issue we cover for the other offline-
based profilers, which is low adaptability to dynamic control-flows.
Nonetheless, ROLP can be considered the online successor of POLM2 in
a lot of aspects. The combination of using both the call stack trace and an
allocation site to distinguish object allocations is an example of something
ROLP has imitated from POLM2 with an online version.
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3.3 Learning-Based Pretenuring

In the article Decrypting the Java Gene Pool [24] the authors introduce a pre-
tenuring technique based on using previously acquired lifetime statistics1

combined with identification of certain micro-patterns. The article defines
micro-patterns as “a non-trivial, formal condition on the attributes, types,
name and body of a class and its components, which is mechanically re-
cognisable, purposeful, prevalent and simple” [24]. The authors aim to
show that there is a high correlation between coding patterns and the life-
time of objects, and by the using gathered lifetime statistics one can reduce
collection times drastically. The pretenuring techniques are implemented
for Jikes RVM, a research based VM maintained as an open-source pro-
ject [1].

The main limitation originating from the work described is that the
analysed micro-patterns and lifetime statistics have to fit any application.
Thus, if the application in which one wants to enable pretenuring is
vastly different in coding style from the analyzed ones, the pretenuring
information might be invalid and cause inefficient tenuring of objects. A
critical example of this would be wrongly denoting an allocation site as
immortal.2 In addition, coding style can vary highly between different
programming languages. This means that the knowledge bank has to
be updated to fit an unknown number of programming languages. A
profiler such as ROLP needs only to hook up to code responsible for
object allocation and promotion, with no knowledge of the programming
language/pattern used (especially for the Native Image, since it supports
languages built with Truffle).

3.4 Allocation Mementos

Allocation Mementos [12] is a work targeting improvement in dynamic
memory management using several online techniques. It is developed by
Google and implemented for the JavaScript engine V8 [2].

Allocation Mementos is one of the works that is fairly comparable to
ROLP. One of the techniques used is online object allocation site profiling
to identify long-lived objects. This is done through small objects which
are referred to as mementos. These objects enable allocation site profiling
in much the same way as ROLP, by tracking newly allocated objects and
survivor objects. This is done by connecting the memento objects to a
profiler which contains information about how many times objects have
been allocated and promoted through a particular allocation site. Based

1The lifetime information is acquired from the DeCapo benchmark suite [4].
2Objects in allocation sites deemed immortal are allocated in a region never collected.
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Latency Overhead Profiling Runtime

POLM2 [7] Up to 80%
reduction in
GC pause
times for
several
workloads.

No memory
and through-
put over-
head.

Offline OpenJDK
8 HotSpot
JVM.

PDP3 [11] Reduction
in GC times
by 12-50%
for certain
benchmarks.

NA Offline TIL [34]

Mementos [12] Targets
latency
for the V8
engine.

Arises from
the injected
memen-
tos objects.
(Slowdown
of 3% for one
the bench-
marks.)

Online V8 [2]

LBP4 [24] 6-77% reduc-
tion in pause
times for
spec jvm98.

NA Offline Jikes RVM [1]

Table 3.1: Summary table for the relevant works.

on the information gathered in the allocation site profiler, objects can be
directly allocated in the old generation.

The work further introduces several other techniques to optimize memory
management. One of them being array pretransitioning. Array transition-
ing is an optimization technique which changes array element represent-
ation. Changing the representation is done to optimize later operations
performed on a specific array (considering both time and space). Since
transitioning is an expensive operation, pretransitioning tries to optimize
this by predicting the optimal array element representation type. The last
of the major optimization techniques this work introduces is presizing.
This consists of initializing an array to a size which prevents further ele-
ment copying and array resizing.

3We refer to the pretenuring done in Generational stack collection and profile-driven
pretenuring [11] as PDP.

4We refer to the work in Descrypting the Java Gene Pool [24] as LBP.
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In comparison to the original ROLP, Memento does have some limitations.
First, mementos do not track the call path of objects, which in ROLP is
done through allocation context. This can lead to insufficient profiling
information. Furthermore, an overhead cost is introduced, especially in
memory footprint, by the mementos objects. ROLP does not require any
further object allocation for object profiling. It simply installs the unique
allocation site identifier in an unused field in the object header.

3.5 Summary

We present a condensed comparison of the different related works
mentioned above in Table 3.1. The table displays the latency reduction for
target environment, profiling overhead, if the profiler is offline or online
and the target runtime in which the mechanisms are implemented. In the
next chapter, we propose several techniques and modifications to enable
object pretenuring for the Native Image through the usage of ROLP.
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Part II

The Architecture and
Implementation.
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Chapter 4

The ROLP-SubstrateVM
Architecture

In this chapter we provide a general overview of the architecture of ROLP
on top of SubstrateVM and their role within Native Image. We especially
focus on the required modifications to the builtin garbage collector Serial
GC and the object lifetime profiling techniques we propose.

4.1 Serial GC with Object Pretenuring

There are several modifications which are needed for the native collector
Serial GC to enable object pretenuring. We present these in the following
sections.

4.1.1 Introducing a Second TLAB

To manage object allocations directly to the old generations, we propose
the usage of a second TLAB. We refer to it as OldTLAB, to distinguish
it from the default one for the young generation, which we refer to as
YoungTLAB. Allocations which happen through the OldTLAB place objects
in the old generation. Only objects which ROLP identifies as long-lived are
allocated through the OldTLAB.

OldTLAB can be seen in the bottom old generation of Figure 4.1.
We can see that OldTLAB covers heap chunks within the old from-
space. Besides distinguishing between allocations for the young and old
generation, allocations which would have lead objects to be placed in
unaligned chunks are ignored by OldTLAB. Unaligned chunks are largely
uncommon, since applications do not tend to allocate a high amount of
large objects. Together with the fact that these chunks only contain one
object, we do not consider them important for profiling and pretenuring.
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Figure 4.1: Basic SubstrateVM’s heap model. OldTLAB in the
old generation is an addition of our GC modification.

The necessary modifications for OldTLAB are not a significant overhaul,
as it mostly entails just changing the path of some heap chunks allocations
from the eden space to the old from-space. How we determine if some
chunks should be allocated in the old from-space through OldTLAB is
determined by looking up object lifetime distribution in the OLD table
(see Section 4.2.5).

4.1.2 Modifying the Collection Policy

The (default) policy set by Serial GC is ByTime. This policy tries to balance
the time spent between doing incremental and complete collections. This
is mainly based on two conditions. If the collective amount of time spent
doing young collections is above a threshold, the next collection will be
complete. In addition, if the amount of space occupied by objects after the
previous collection is above a certain threshold, a complete collection is
also triggered. If the conditions above are not met, only an incremental
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collection is performed.

A collection is triggered only during slow-path allocation (see Sec-
tion 2.5.4). The size of the newly allocated heap chunk is counted towards
checking if the total size of all heap chunks in the young generation ex-
ceeds its maximum size. If it does, a collection is triggered. As mentioned
above, this collection will be only incremental if none of conditions of the
ByTime policy are met for a complete one. A complete collection would
entail also an incremental one.

Given our proposal of ROLP, an issue arises which is that objects which are
directly allocated in the old generation should not count as heap chunks
for the young generation. However, we require to keep track of them for
a collection for the old generation. For this, we propose the usage of a
second counter of heap chunks allocated through OldTLAB, which is used
to trigger a collection based on heap chunks allocated through the slow-
path for the old generation. The condition to trigger a collection based on
these new heap chunks is that their total size exceeds a certain percentage
of total heap space. Collections triggered through this path cause complete
collections. The implementation of this mechanism is covered in detail in
Section 5.5.2.

4.2 Integrating ROLP

Designing ROLP for the Native Image runtime SubstrateVM implies
providing the information regarding object lifetimes to Serial GC. Objects
showing a pattern for surviving at least 1 collection are considered old and
allocated directly in the old generation. Objects that do not tend to live
passed a single GC are categorized as young and allocated in the young
generation. Statistics regarding if an object is old or young is gathered by
tracking objects promoted and allocated through corresponding allocation
site. We keep track of the lifetime statistics in the the OLD table (see
Section 4.2.5).

The complexity of our version of ROLP is considerably lower than the
HotSpot version, since we are only working with two allocation spaces,
compared to the configurable amount of ROLP + NG2C. Serial GC is also
non-concurrent and thus all of the GC work happens through a single
thread. In the following sections we present the specific algorithms and
data-structures required to enable object pretenuring in Serial GC through
the usage of ROLP.
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Figure 4.2: The bits in the object header which we are going to
occupy. By default it contains the (uninitialized) identity

hashcode.
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Figure 4.3: The bits we are occupying within the object layout
for the allocation site identification and age.

4.2.1 Profiling of Objects

We propose profiling of objects through their corresponding allocation
sites. Allocation sites functions as an unique identifier for the code
position of where objects are allocated. Objects allocated can then
be referenced through their allocation site identifier. We calculate
the allocation site identifier for each object allocation site by simply
incrementing a counter for each new site. The counter is then embedded
as a 30-bit number into the object’s identity hashcode field.

In fact, each object´s header has 32-bits (initially reserved for the object
identity hashcode) in which, the 2 left-most bits, are used by us for
tracking the age of an object, and therefore initialized to 0. As already
mentioned, the space we occupy within an object´s header is initially
reserved for the object identity hashcode. This can be seen in Figure 4.2.
The hashcode of an object is generated on request; therefore, the space
reserved for it can be safely used for the allocation site identifier until it is
required. The usage of the hashcode field can be seen in Figure 4.3. How
we differentiate between valid allocation sites and hashcodes is described
in Section 5.5.1.
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4.2.2 Rewriting Compiler Intermediate Representation

Function SetupObjectAllocationSites(graph):
foreach NewInstanceNode n ∈ graph do

/* finding the hashcode offset within object layout */
hashCodeO f f set = n.getHashCodeO f f set();
address = O f f setAddressNode(n, hashCodeO f f set);
/* inserting allocation site in object */
allocationSite = createAllocationSiteForNode();
writeNode = WriteNode(address, allocationSite);
/* including the changes to the IR graph */
graph.add(address, writeNode)

end
End Function
Algorithm 1: Instrumenting allocation nodes to include allocation site.

The compiler is instrumented to embed the allocation site ID into the ob-
jects. This requires the rewriting of the intermediate representation (IR)
of the compiler. The compilation of native images works through compil-
ation phases which modify the Abstract Syntax Tree (AST). We propose
the addition of a custom compilation phase to modify compilation nodes
representing allocations, such that their corresponding objects contain the
unique allocation site identifier.

The algorithm modifying the compiler is illustrated in Algorithm 1. The
method shown must run after all of allocation nodes have been inserted
into the compilation graph. We refer to each one of these allocation nodes
as a NewInstanceNode. We setup the allocation site for each of the nodes
in the foreach-loop of SetupObjectAllocationSites. Since we are going
to occupy the identity hashcode field in the object header, we first need
to fetch the hashcode offset of the object. This is transformed into a node
representing the hashcode offset address for the given object allocation
node. A unique allocation site identifier is generated which is inserted
into a node together with the offset address for the identity hashcode.
This is done such that the nodes we made are a part of the compilation IR
graph; we append them to the graph after all necessary changes have been
made. During runtime, all object allocations will now have an allocation
site value written into them in the identity hash code field.

4.2.3 Profiling Phase

To gather lifetime information about objects, we restrict a pre-defined
number of epochs1 from the beginning of the program execution for
profiling. During this phase, only information regarding object lifetimes is

1Epoch corresponds to a GC cycle.
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Figure 4.4: Depiction of the events triggering an update in the
OLD table. profileAllocation is called upon object

allocation. promoteObject is called upon object promotion.

gathered, without pretenuring objects. How this information is gathered
is covered in the subsequent sections.

After the GC has passed the final profiling epoch, profiling is turned off
to enable pretenuring of objects. Profiling is also turned of to restrict costs
related to it, since it does induce a significant overhead.

4.2.4 Object Allocation

During object allocation, it is decided if we should allocate the object in
a heap chunk designated for the young or old generation. This is done
after the profiling phase, which is determined by a user set epoch. After
the profiling phase, we look up the distribution of the given allocation
site attached to the object. If the number of promoted objects for the
allocation site outnumber the number of newly allocated objects, the object
is allocated in active OldTLAB chunk. Otherwise, the object is allocated in
the active chunk of the YoungTLAB. The reasoning for waiting until above
a certain GC epoch, is because we wait until we have a fair distribution
of the objects in the OLD Table (described in Section 4.2.5). Looking up
object target generation too early could lead to objects being allocated in
the wrong generation.

4.2.5 The Object Lifetime Distribution Table

To keep track of newly allocated and promoted objects for a given
allocation site, a data-structure is needed. We propose a simple Object
Lifetime Distribution Table to keep track of object lifetime statistics. Each
entry in the table corresponds to a lifetime distribution for an allocation
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Figure 4.5: Allocation context with Thread Stack State.

site. The lifetime of objects is calculated in terms of how many GC cycles
they have survived. This can be calculated up to a maximum of 3, since
2 bits in the modified object header are reserved for this, as shown in
Figure 4.3. The size of the table is pre-initialized to a static size.

The lifetime distributions within the table are primarily updated during
two events as described now.

• Object allocation, in which a new object is generated. In this case we
simply increment the amount of objects of age 0 for a given allocation
site. This is done for each allocated object during profiling.

• Object promotion. This is what allows to determine if most objects
are surviving into the old generation. An object is promoted if it
survives a collection from a from-space into a to-space. If an object
is promoted, we increment the amount of objects with age i for the
corresponding allocation site. We then decrement the amount of
objects of age i − 1. The age bits within the object layout are also
modified to match the new age of the object. This is done for each
promoted object in aligned chunks during profiling.

There are further minor events which could trigger an update in the OLD
table. These are are mainly:

• Generating hashcode. When an object requires a hashcode, the
allocation site value has to be overwritten. This in turn decrements
the amount of objects in the table with a given allocation site value,
since the object is not longer being tracked.

• Tracking deallocated objects. Since all of the heap chunks in the
from spaces are consumed2 at the end of a collection, we can run
through them and find each object which has not been copied into
the survivor space. For each non-forwarded object we decrement the
amount the corresponding objects in the OLD table. This can make
the lifetime information substantially more accurate.
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4.2.6 Tracking Thread Stack State

To further increase the accuracy of the pretenuring statistics, we propose
the usage of Thread Stack State (TSS). TSS is used to further distinguish
allocations which happen through different method call paths. This is
done by counting the number of method calls before the allocation of an
object. The number of calls is then embedded together with the allocation
site identifier in the object header. How the object identity hashcode field
in SubstrateVM would look like with TSS can be seen in Figure 4.5. 30 bits
are reserved for both the allocaiton site and TSS in the identity hashcode
field, both occupying 15 bits each. The age occupies the two left-most bits.

4.2.7 Dynamic Profiling

Profiling from ROLP does induce a significant overhead. This is due to the
fact that we have to do a memory read of the object header, and potentially
a write if the object age is incremented, for each object which survives a
collection. The problem of turning off the profiling is that if object lifetimes
drastically changes, the previous pretenuring statistics become faulty.

This could be the case in applications which might deal with varying loads
of incoming data. There are several ways to manage this. We propose
the usage of dynamic profiling. Detecting a possible incorrect pretenuring
pattern due to a change in object behaviour could be done by checking if
there is an increase in the time spent doing collections. To determine that
the collection times have increased, a technique could be to compare the
average time spent doing collections after profiling has been turned of for
a set amount, and then see if there is a set of collections after that which
spend more time by average. If this is the case, it means most likely some
objects are being pretenured incorrectly. Then one can turn on profiling
again for a set amount of epochs to capture new lifetime information.

4.3 Discussion

We now present some of the divergences ROLP with Serial GC takes
compared to ROLP with NG2C. As we can see in Table 4.1, some of the
proposed features we see in Chapter 4 have not been pursued during
implementation. These are mainly dynamic profiling and tracking of TSS.
These features are not necessary for object pretenuring, but would increase
the reliability of the lifetime statistics gathered and relieve developer
effort.

The reason for not pursuing TSS is simply due to the complexity of the
feature, which is outside the scope of this thesis. Identifying the set

2Released to memory or added to a list of unused chunks.
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ROLP with Serial GC ROLP with NG2C

Runtime GraalVM Native Image Java HotSpot

Target Applications Microservices Big Data
Appplications

Tracking with TSS No Yes

Dynamic Profiling No Yes

Fully accurate life-
time information

Yes (with tracking of deal-
located objects)

No

Code Profiled All allocations All JIT-compiled
allocations

Generations Old + Young Old + Young + 14
generations

Table 4.1: Comparison of the different ROLP versions.

of functions to track and how long to track them for is not trivial, and
requires heavy experimentation.

Dynamic profiling requires mainly the tracking of a set of collection
times and comparing the averages against each other, and some minor
modifications to ROLP. We have not pursued this mainly because we
believe that the evaluations would have not been heavily impacted by it.
We discuss these features further under future work.

A feature which is available in our version of ROLP, which was not trivial
for the NG2C version, is the tracking of deallocated objects for highly
accurate lifetime information. We discuss the implementation details of
this feature and its impacts on the profiling in section Section 5.4.5.

4.4 Summary

In this chapter we have gone through the necessary modifications required
to enable object pretenuring for Serial GC. In addition, we presented how
object lifetime profiling can be implemented through the usage of ROLP.
In the next chapter, we present the actual implementation of the proposed
modifications in detail.
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Chapter 5

Implementation of ROLP with
SubstrateVM

In this chapter we provide an in depth implementation description of
ROLP for Serial GC. First we mention which development tools we use,
such as programming languages, build tools, runtime/build options and
operating system. Then, we describe how the compiler is extended to
enable allocation site tracking and how the resulting compiler graph
changes. We discuss the implementation details of the events triggering
updates in the OLD table and how we avoid high profiling costs.
Modifications to the heap model and collection policy are also presented.

5.1 Development Tools and Project Repository

We start by providing an overview of the programming languages and
tools used for the implementation. We also describe the modified files,
and where the implementation can be found.

5.1.1 Programming Languages

The language we use to extend SubstrateVM with ROLP is Java 8. This
falls as a necessary choice, since the majority of the VM is written in Java 8.
For read/write to memory and lower-level access, SubstrateVM provides
the necessary wrapper methods which either use the internal class Unsafe
or bindings to the C/C++ languages.

The applications which we run as native images are written as pure Java
8 programs. We avoid the use of other JVM-based languages or usage of
languages written on-top of the Truffle API.

All of the development is done under the operating system macOS
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Catalina version 10.15.7. The implementation should work for all
operating systems supporting GraalVM 20.3.0.

5.1.2 Build Tools and Options

To build and generate the sources for the GraalVM projects, we use the tool
provided under the GraalVM project known as mx [17]. Through the use
of mx build we build the projects from scratch, and generate the necessary
sources to run the different GraalVM projects. To generate projects files
and enable formatting for IDEs, the command mx ideinit is required.
mx clean is used to remove compilation artifacts.

After building the project, we can compile applications into the native
image executables. This is done by first compiling them into .class files
containing java-bytecode. This is done through a regular JVM (done
by running javac), and then passing along the main class file to the
native-image script within the GraalVM repository.1 Running the script
should generate a native image with the runtime of SubstrateVM.

The native image compilation options which have been necessary under
the development of ROLP were:

• -H:+RolpGC to enable ROLP.

• -H:FinalEpoch to specify at which epoch to stop profiling with
ROLP. Default value of 16.

• -H:+AllocationProfiling. This option is necessary to run ROLP,
since it enables us to pass along the allocation site of each
NewInstanceNode and NewArrayNode to an allocation profiler incor-
porated for each allocation site. Without modifications, this option
tracks the amount of objects that have been allocated through a spe-
cific allocation site.

• -H:+SurvivalRate to print the percentage of objects which survive a
collection. This was added such that the we can confirm objects are
being allocated according to their distribution in the OLD table.

• -R:+VerboseGC to print information about each garbage collection
(current epoch, heap chunks, time spent, etc.). Necessary for
benchmark testing. +R:PrintGC for more detailed logging.

• -H:+TraceObjectPromotion to print information regarding an object
about to be promoted. Modified to include lifetime distribution for
object’s corresponding allocation site.

1The location of the script is under sdk/latest_graalvm_home/bin.
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• -R:PercentHeapThreshold to adjust when to trigger a collection
according to taken heap space. Added to match the heap usage of
native image without ROLP.

• -H:InitialCollectionPolicy. The default GC policy used by
SubstrateVM is ByTime. As already mentioned in Section 4.1.2, it tries
to balance between the time spent doing collections due to collection
time and occupied heap space. We implement a slightly differing
policy ByTimeWithRolp, which in addition takes into account the
occupied size within the old generation and triggers if the heap
threshold from PercentHeapThreshold is met.

There are several build and runtime options which we cover in more detail
in Chapter 6. We cover them further on as they are only relevant to the
specific benchmarks and evaluations they are enabled for.

5.1.3 Project Repository

The repository containing the changes implemented during the course of
this thesis can be found on https://github.com/lionas32/graal.

The files with the most important changes are as follows.2

• FixedObjectLifetimeTable.java serves as our interface to the OLD
table. It provides all of the necessary methods to interact with the
OLD table and retrieve and set object target generation.

• SubstrateAllocationSnippets.java and AllocationSnippets.java
for most of the changes related to allocation. Some are presented in
Listing 1 and Listing 2.

• Space.java provides the methods and necessary variables related to
spaces and object promotions. Changes made are related to object
promotion (see Listing 2).

• ThreadLocalAllocation.java for the changes made to introduce a
second TLAB for the old generation.

• HeapPolicy.java and CollectionPolicy.java for the necessary
changes to the GC policy.

• GCImpl.java for changes related to the caching and clearing of the
OLD table.

• InsertAllocationSitePhase.java to instrument the insertion of an
allocation site to the objects.

• DecrementAgeVisitor.java for tracking of deallocated objects.

2All of the files are under the /svm folder. Only the InsertAllocationSitePhase
exists under /compiler.
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(a) With a custom compilation phase. (b) Regular compilation.

Figure 5.1: Compilation graphs with (a) InsertAllocationSitePhase and
(b) without (regular compilation).

• IdentityHashCodeSupport.java and JavaLangSubstitutions.java
to manage identity hashcode behaviour with ROLP.

Changes to any other files contain only minor modifications in regards to
enabling object pretenuring, or only serve the purpose of logging metrics.

5.2 Adding a Custom Compilation Phase

As mentioned in Section 4.2.1, to enable object lifetime profiling we have to
embed a 30-bit allocation site value into the object layout, along with 2 bits
for age. In our implementation, this is done through a custom compilation
phase we have added in, known as InsertAllocationSitePhase (as noted
above).

We apply the algorithm seen in Algorithm 1 to every NewInstanceNode
and NewArrayNode in the compilation graph. These nodes hold informa-
tion related to class and allocation site for objects.

The result from instrumenting the compiler to install a personal al-
location site for a custom application containing object SmallObject
can be seen in the Figure 5.1a. The sub-graph displays how the
InsertAllocationSitePhase has modified the New SmallObject node
with ID 687, representing the object allocation. We instruct the compiler
that we perform a write-operation to the location within the object cor-
responding to the identity hashcode. This can bee seen through the node
WriteNode#identityHashCode with ID 940 in Figure 5.1a. The offset to
the identity hashcode for the object is contained within the OffsetAddress
node (ID 938), and passed along to the WriteNode#identityHashCode. The
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Figure 5.2: Ideal Graph Visualizer.

results of regular compilation without InsertAllocationSitePhase can
be seen in Figure 5.1b. In this case, there is no OffsetAddressNode and
WriteNode modifying the internals of the New SmallObject node.

5.2.1 Ideal Graph Visualizer

Ideal Graph Visualizer (IGV) [40] is a tool developed to visualize the
compilation graphs of JVM programs. It is integrated into Native Image,
and we use it during the implementation to confirm that the nodes
responsible for the allocation site ID are generated and inserted correctly
in to the compilation graph. A zoomed out version of the IGV compilation
graphs in Figure 5.1 can be seen in Figure 5.2. The outline contained within
the left-side contains the different compilation phases in the order they
are processed. These phases can be selected, and we can see the resulting
compilation graph of a selected phase in the main window.

5.3 Implementing OldTLAB

We introduce the second TLAB oldTLAB in the predefined class
ThreadLocalAllocation. This is where most behaviour concerning alloc-
ation of new heap chunks, setting up of TLAB and slow-path allocation
occur. A majority of the methods in the class are rewritten to allow alloc-
ation to happen both through the youngTLAB and oldTLAB, instead of just
youngTLAB.
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The most significant changes found in the class are included in the meth-
ods slowPathNewInstance, retireToSpace and prepareNewAllocationChunk.
A short description of the methods and their modifications follows.

• slowPathNewInstance is the entry method for slow-path allocation
(see Section 5.4.2 for how an allocation looks like). It leads to a
fairly complex chain of behaviour related to allocating and setting
up of new heap chunks for a TLAB. Our modification to the method
includes diverting the object slow-path allocation to the oldTLAB, if
its target generation is old. The necessary change to the method itself
to achieve this is not large, but it requires that the chain of methods it
calls is rewritten to allocate in the correct TLAB and achieve correct
behaviour.

• retireToSpace is triggered right before a collection occurs. The
method flushes all of the chunks contained within the TLABs to their
corresponding spaces. In addition, it sets up the FOT for the objects
in which the target generation is old (see Section 5.4.2).

• prepareNewAllocationChunk is the method responsible for allocat-
ing new heap chunks (or retrieving from a list of unused chunks)
for a TLAB. The modification we have introduced is related to the
counting of heap chunks which have been allocated in the old gen-
eration. The value is then used to trigger collections based on how
many heap chunks are in the old generation. Modifications to the
collection policy are covered in Section 5.5.2.

5.4 Object Lifetime Distribution Table

We have previously presented the main two events triggering changes
in the OLD table: i) object allocation, and, ii) object promotion in
Section 4.2.5. We start of by briefly explaining the implementation of the
OLD table, before going in depth on the events triggering updates in the
table.

5.4.1 Implementation of the OLD table

The Object Life Distribution table is implemented as a static hash-table.
The size of the table is set to a pre-initialized static size of 6553. This
size seems to be enough to cover all of the allocation sites, in addition
to the allocation sites contained within the runtime code. The key values
for accessing the table are integers corresponding to allocation site values
of objects. All of the methods which interact with the OLD table make
sure to mask out the lower 30 bits of the allocation site value before
indexing lifetimes. This is because age occupies the 2 left-most bits (see
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FixedObjectLifetimeTable

+ allocationSiteCounters: int[][]
+ youngOrOld: int[]
+ toProfile: boolean
+ epoch: UnsignedWord

+ incrementAllocation(int allocationSite, int lifetime): boolean
+ decrementAllocation(int allocationSite, int lifetime): boolean
+ clearTable(): void
+ cacheTable(): void
+ maskAge(int allocationSite): int
+ maskAllocationSite(int allocationSite): int
+ exists(int allocationSite): boolean
+ getCachedGeneration(int allocationSite): boolean
+ getLifetimesForAllocationSite(int allocationSite): int[]

Figure 5.3: The fields of the FixedObjectLifetimeTable class.

Section 4.2.1). The entries of the OLD table are 4-length integer arrays,
depicting lifetime statistics for a given allocation site. The 0th index
corresponds to the amount of objects of age 0 for a given allocation site.
All of the following indexes represent how many GC cycles an object has
survived. Objects of age 3 (we count from 0), are at the maximum possible
age and therefore we do not increment the amount of max age objects, if
the object was at max age before promotion.

Since the allocation sites are generated as unique values bounded up to the
OLD table size we can index the OLD table directly using the allocation
site values. The methods implemented for the OLD table can be seen in
Figure 5.3.

A short description of each of the methods which allow interaction with
the old table follow.

• incrementLifetime to increment the amount of objects with
allocationSite and age. Values updated in the allocationSiteCounters
array.

• decrementLifetime to decrement the amount of objects with
allocationSite and age. Values updated in the allocationSiteCounters
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array.

• cacheTable and clearTable, which are called upon when we turn
off profiling. We store the pretenuring information in the youngOrOld
array (1 indicating target generation is old, 0 indicating young), and
clear the allocationSiteCounters lifetimes array afterwards.

• maskAge and maskAllocationSite to mask out the age (2-leftmost
bits) and allocation site (30-right most bits) from an integer.

• exists to check if allocationSite is a valid allocation site. An
invalid allocation site would be of value 0 or above the maximum
size of the allocationSiteCounter array.

• getLifetimesForAllocationSite to retrieve lifetime distribution of
allocationSite.

• getCachedGeneration to retrieve if the target generation for
allocationSite is old or young. Target generation is retrieved from
the youngOrOld array.

Since all of the allocation site values are unique, the time complexity
for all of the methods which index the table based on allocationSite
are constant. Subsequent sections describe usages of the aforementioned
methods.

5.4.2 Object Allocation

Object allocateInstance(hub, profilingData, ...){
DynamicHub checkedHub = checkHub(hub);
int site = profilingDatza.allocationSite()
boolean forOld = false;
if(epoch > OLD.stopProfilingEpoch){

forOld = OLD.placeInOld(site)
}
Object result;
if (forOld) {

result = allocateInstanceImplForOld(encodeWithRememberedSet(hub),
profilingData, ...)

} else {
result = allocateInstanceImpl(encodeHeader(hub),

profilingData, ...)
}
return result;

}

Listing 1: A snippet demonstrating how we take a decision for
target generation of an object.
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Object allocateInstanceForOldImpl(object, profilingData, ...) {
Object result;
Word tlab = getOldTLAB();
Word top = readTlabTop(tlab);
Word end = readTlabEnd(tlab);
Word newTop = top.add(size);
if (useTLAB() && newTop.belowOrEqual(end))) {

writeTlabTop(tlab, newTop);
result = formatObject(object, ...);

} else {
result = callNewInstanceStub(object, true);

}
profileAllocation(profilingData, size);
return result;

}

Listing 2: A snippet demonstrating bump-pointer allocation
and subsequent increment of lifetime.

During the lowering3 of the NewInstanceNode and NewArrayNode nodes,
we pass along the generated allocation site to the profiling data
which we can access upon corresponding object allocation. This is
also why we also require that the applications are generated using
-H:+AllocationProfiling. Otherwise, there would be no profiling data
attached to each object type. The profiling data is represented by the
profilingData parameter in Listing 1.

When the method responsible for allocation (see Listing 1) is triggered, a
decision between placing the object in a chunk designated for the young
or the old generation is taken. The variable checkedHub contains class
information related to the object. The allocation site which allows us
to do lookup of the target generation is currently located within the
profilingData. We do not perform the target generation lookup until
the epoch value is above stopProfilingEpoch, since we want a fair
distribution of object lifetimes to build up. After profiling of objects has
ended and all of the target generations are cached, we can use the target
generation to allocate objects in either a heap chunk designated for the
young or old generation. If the target generation is old, we allocate the
object through allocateInstanceImplForOld. Otherwise, the object is
allocated through the unmodified method allocateInstanceImpl.

The method allocateInstanceForOldImpl in Listing 2 is responsible for
allocating an object in the old generation. It allocates objects through
the OldTLAB, which is fetched through the method call getOLDTlab. The

3Lowering is the conversion of a higher-level abstraction to a lower-level. In this case it
is the lowering of nodes representing allocations into methods responsible for allocations
of actual object instances.
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Figure 5.4: Object allocation with ROLP.

objects are then allocated either through the fast-path or the slow-path.

The separation between fast and slow-path can be seen in the two different
branches of the if-statement in Listing 2. We run through the fast-path in
the case the if-statement condition holds true. This is simply if the new
top of the TLAB allocation chunk is below the end of the chunk. The fast-
path is executed as bump-pointer allocation. This means we check that
the allocation will not exceed the size of the chunk. If it does not exceed
it, we proceed with aligning the object after the last allocated object in the
chunk.

In the case in which the condition evaluates to false, we go through the
slow-path. The call to callNewInstanceStub will either allocate a new
heap chunk, or fetch one from a list of unused chunks. Which TLAB
to allocate the heap chunk for is determined by the second parameter
of callNewInstanceStub. In this case it is true, meaning create a heap
chunk for the TLAB attached to the old generation. After a new heap
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chunk is in place, bump-pointer allocation for the object is executed within
callNewInstanceStub. The call to profileAllocation will increment
objects of age 0 for a given allocation site in the OLD table. The
allocation site is contained within profilingData, being passed along to
profileAllocation.

It it is important to note that the code snippets above have been simplified
from the actual implementation for the sake of example. The methods
accept several other parameters related to type information, size of object
and alike. We have implemented equivalent methods for array allocation
which we do not feel is necessary to cover here. The main distinguishing
difference is that array size effects the allocation, potentially putting an
array in a unaligned chunk. In that case, we do not profile the array
allocated, due to rareness of these types of allocations.

Figure 5.4 depicts in a more general sense how object allocation functions
according to the aforementioned modifications.

Setting the First Object Table

We briefly mentioned how the card remembered set and FOTs works in
Section 2.5.5. Therefore, when allocating objects in which the targeting
generation is the old one, we have to set the remembered set bit for
them. This modification can be seen in Listing 2, through the method call
encodeWithRememberedSet(checkedHub). The object header in this case is
set with a REMEMBERED_BIT.

void setUpFirstObjectTableEntry(AlignedHeader that, Object obj) {
Pointer fotStart = getFirstObjectTableStart(that);
Pointer memoryStart = getObjectsStart(that);
Pointer objStart = Word.objectToUntrackedPointer(obj);
Pointer objEnd = LayoutEncoding.getObjectEnd(obj);
setTableForObject(fotStart, memoryStart, objStart, objEnd);

}

Listing 3: Setup of the first object table for old generation
objects.

In addition, we have to setup the first object table of each object contained
within a old generation heap chunk. The code for it can be seen in
Listing 3. The necessary offsets are calculated through builtin methods.
The offsets are the location of the FOT within the heap chunk, object start
within the chunk, and object pointers to start and end of the object we are
setting the FOT for. This is done during the retiring4 of the heap chunks
right before a collection. Since it is done for each object within heap chunks
about to be retired to the old from-space, it does induce a overhead. It

4Appending of heap chunk to its corresponding allocation space.
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Object promoteAlignedObject(Object original, Space originalSpace) {
int allocationContext = 0;
if(SubstrateOptions.RolpGC.getValue() && OLD.toProfile){

allocationContext = computeLifetimeBeforePromotion(original);
}
...

}

int computeLifetimeBeforePromotion(Object obj){
int hashCodeOffset = getHashCodeOffset(obj);
int allocationContext = readInt(obj, hashCodeOffset);
if (allocationContext == 0 || OLD.exists(allocationContext)) {

return 0;
}
int prevAge = getAge(allocationContext);
int newAllocationContext = incrementAge(obj, allocationContext);
int newAge;
if (newAllocationContext == allocationContext) {

newAge = prevAge; // object already at max age
} else {

newAge = prevAge + 1;
}
if(newAge > 0 && newAge != 0b11 || prevAge == 0b10) {

boolean inc = OLD.incAllocation(allocationContext, newAge);
boolean dec = OLD.decAllocation(allocationContext, newAge - 1);

}
return newAllocationContext;

}

Listing 4: Computing of lifetime during promotion.

seems to be necessary to perform this for each object designated for the
old generation, since they can contain references to objects in the young
generation. We set the FOT during retiring of chunks since this is when
the application state is at a safepoint.5 We cover this here since we will see
in Chapter 6 that this can affect collection times with ROLP.

5.4.3 Object Promotion

When a collection is triggered all of the reachable objects in the from-
spaces (eden space and old from-space) are moved into the old to-space,
which then becomes the new old from-space. This copying of objects is
the second major event responsible for inducing significant change to the
distribution object lifetime table. The implementation of computing new

5A state of the program in which memory, registers and thread-local variables can be
safely inspected.
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lifetimes for objects can be seen in Listing 4.

The promotion of an object in an aligned chunk happens in the builtin
method promoteAlignedObject. We exclude details related to copying
since they are not relevant for the lifetime computation. The relevant part
of the method is the if-statement in which we check if profiling is still
ongoing (depends on the value of OLD.toProfile variable). If profiling
is ongoing, we compute new age for objects and update the OLD table
through the method computeLifetimeBeforePromotion.

There are two expensive read/writes to memory that occur during
computeLifetimeBeforePromotion. The first one is when we need to read
the allocation site of the object. This can be seen in the call to readInt,
which uses the object hashcode offset to fetch the allocation site. The age
value of the object is contained in the 2 left-most bits of the site value. If
the age value is not at the maximum (3), we increment the previous age
value and write it to the object. These two read and write operation are
the main source of overhead during the profiling. The write operation is
avoided if the object is at maximum allowed age.

After the age computation, we determine if we should change the
distribution within the OLD table. We simply check if the object was
at max age before. If it was, we do not change the distribution.
Otherwise, we decrement the amount of objects with the previous age
and we increment the amount of objects with the new age. The
change in the distribution occurs during the OLD.incAllocation(...) and
OLD.decAllocation(...) calls.

The method promoteAlignedObject also highlights the usage of the
RolpGC option. It is prevalent in all of the other methods in which we have
to hook into with our profiling and pretenuring code. We have included it
here to just show how we separate the behaviour from the case in which
ROLP is not enabled, since code within the option is only executed if the
user has requested it.

5.4.4 Caching of Target Generation

The lifetime distributions for each allocation site are cached and cleared
upon a pre-defined epoch (default value of 16). This value is contained
within the FinalEpoch variable in Listing 5, used in the collectOperation
method. This method is responsible for performing collections, which we
exclude details of. If the condition in the method is true, we start of by
caching the table.

The caching is performed in the cacheTable method, located within
FixedObjectLifetimeTable.java. We go through each allocation site,
represented by each index in the allocationSiteCounters array. Count-
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// Contained withe GCImpl.java
boolean collectOperation(GCCause cause, UnsignedWord requestingEpoch) {

... // functionality related performing a collection
if(FixedObjectLifetimeTable.toProfile && collectionEpoch.equal(FinalEpoch)){

FixedObjectLifetimeTable.cacheTable();
FixedObjectLifetimeTable.clearTable();

}
... // functionality related to cleaning up after collection

}

// Contained within FixedObjectLifetimeTable.java
static void cacheTable(){

for(int i = 1; i < STATIC_SIZE; i++){
int[] allocs = allocationSiteCounters[i];
boolean toCache = allocs[0] < allocs[1] + allocs[2] + allocs[3];
if(toCache) {

if(youngOrOld[i] == 0){
youngOrOld[i] = 1;

} else {
// this case skipped

}
}

}
toProfile = false;

}

Listing 5: Caching of target generation.

ing starts from 1, since we use 0 as a invalid allocation site value. We
cache the target generation for each allocation site by evaluating the con-
dition allocs[0] < allocs[1] + allocs[2] + allocs[3]. The intial in-
dex allocs[0] contains amount of objects which did not get promoted.
allocs[1-3] contain the corresponding amount of objects with lifetimes
ranging from 1 to 3. If the condition is true, it means that the objects for
the current allocation site are long-lived, and thus we cache a 1 in the
youngOrOld array to indicate that. The value we set in the array is oth-
erwise a 0, indicating allocate the objects in the young generation.

At the end of the caching we disable profiling. This is done by
setting toProfile = false. Instead of profiling, the values within the
youngOrOld array will now be utilized to allocate objects in either the
young or old generation. After the caching of table, clearTable() clears
the allocationSiteCounters array of lifetime information.
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(b) Regular ROLP.

Figure 5.5: Collection times with DecrementAgeVisitor enabled (a)
and without (b).

5.4.5 Tracking consumed chunks

When a collection happens, all of the unused chunks are either free’d to
the operating system or added to a free list of unused chunks. This is done
through a builtin method consumeAlignedChunk, which is called after each
collection. By walking through the dead chunk passed to the method,
we can identify objects which are not forwarded (promoted to the old to-
space), and simply decrement their corresponding lifetime. Objects which
are not forwarded are identified if they do not contain a forwarded bit in
their header.

If one wants to gather more accurate lifetime statistics, one can en-
able this in our implementation. We have implemented a custom
DecrementAgeVisitor. If enabled, this visitor object is called on each heap
chunk passed to the consumeAlignedChunk method. It runs through each
object in the heap chunk. If the object is forwarded, we do not visit it.
This is because there exists a live copy of it in the to-space. Otherwise, we
lookup the object allocation site and decrement the age of it in the OLD
table.

The problem which arises from the technique mentioned, is a noticeable
increase in overhead during profiling. This is due to the fact that we are
required to a read operation on each object in the heap chunk to determine
if the object was promoted or not. We can see this in a simple native
image application in which we write to a cache in round-robin fashion
in Figure 5.5. In the figure we have collection times with and without
DecrementAgeVisitor enabled. During the profiling phase (before the
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red indicator), Figure 5.5a has about a 11% increase in total collection
time compared to Figure 5.5b. In addition, we can see that for this
example the collection times after the profiling remain the same. This
means that the pretenuring information is equal for all of the objects in
the evaluations above, thus indicating that enabling DecrementAgeVisitor
does not improve the pretenuring of objects in this case.

The reason for the sudden increase in individual collection times for both
evaluations after profiling, is due to the fact that all objects are identified
as being long-lived and allocated directly in the old generation. This in
turn triggers only complete collections.

To enable deallocated object tracking, one can uncomment lines 162-164 in
DecrementAgeVistor.java.

5.5 Preserving Necessary Functionality

Some of the changes that we introduce through ROLP require modifica-
tions to the behaviour of the runtime such that we do not impend on stand-
ard functionality. These are mainly related to managing of object identity
hashcode and maintaining a fair collection policy. The implementation
details of these modifications are presented in the upcoming sections.

5.5.1 Managing Object Identity Hashcode with ROLP

The allocation site of objects occupy the object field meant for identity
hashcode. Initially, all objects hold a value of 0 in the hashcode field.
Therefore, overwriting this with the allocation site does not cause any is-
sues initially. However, the identity hashcode for objects is generated dur-
ing the first call of obj.hashCode() or System.identityHashCode(obj)6

(or any other builtin means of retrieving object hashcode). If this call oc-
curs for an object and it contains an allocation site ID, we now need to
overwrite it and exchange it with a valid identity hashcode value.

If the hashcode field within the object contains an allocation site value,
overwriteContextForHashCode executes for that object. This can be
seen in Figure 5.6, occurring after a call to obj.hashCode(). The
method initially decrements the amount of objects with its corresponding
allocation site. Subsequently, a valid hashcode value is generated through
a builtin method generateHashCode. The method has been modified to
initialize hashcode values to be between the size of the table and the
maximum allowed integer value in java7. This is to avoid conflicts with
allocation site values, which all are within the range of the OLD table size.

6If the class of the object has not overwritten the hashcode method .hashCode().
7231 − 1 = 2, 147, 483, 647
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Figure 5.6: Activity diagram displaying management of object hashcode.

After generating the hashcode value, we then utilize the Unsafe class to
overwrite the object hashcode field in memory, which now instead of
containing the allocation site value for the object will have a valid identity
hashcode value embedded.

An activity diagram is depicted in Figure 5.6 describing the flow of
generating a valid hashcode. If the .hashcode() method is overridden,
there no need to overwrite the hashcode field in the object layout (the
left-path of the diagram). Otherwise, the object most likely contains an
allocation site value. In that case, overwrite it with a hashcode value and
return it as an integer.

5.5.2 New Collection Policy

Using ROLP requires a collection policy which takes regard for objects
allocated in the old generation. We implement this through a custom
policy ByTimeWithRolp. All collection policies have to contain two
methods, collectIncrementally and collectCompletely. These can be
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// Methods contained within ByTimeWithRolp.java
@Override
public boolean collectIncrementally() {

return true;
}

@Override
public boolean collectCompletely() {

boolean result = collectCompletelyBasedOnUsedBytes(trace);

return result;
}

private static boolean collectCompletelyBasedOnUsedBytes(Log trace) {
UnsignedWord withFullPromotion = HeapPolicy

.withFullPromotion; // Threshold value for complete collection

UnsignedWord oldInUse = HeapPolicy.getOldUsedBytes();
return oldInUse.aboveOrEqual(withFullPromotion);

}

Listing 6: The methods of the collection policy ByTimeWithRolp

seen in Listing 6. For all policies, these methods are called when the GC
has to decide if it will perform an incremental or a complete collection.
The behaviour for these methods defined through our policy is as follows:

• collectIncrementally always evaluates to true. This is because
the method is called if a collection was decided to occur due to a
slow-path allocation, which is independent of the method above, but
relates to the occupied size of the young generation. This is also how
Serial GC by default implements incremental collections.

• collectCompletely trigger a complete collection, if the occupied
space in the old generation is beyond a limit. We define this limit as
the maximum heap size subtracted twice with the young generation
size. The reason for subtracting twice is that a complete collection
has room for a promotion of the young generation. This limit value
is contained within the variable withFullPromotion.

Throughout the implementation, an option to only trigger complete
collections without incremental collections was explored. All complete
collections entail incremental collections by default. Since a young
generation in ROLP might potentially not be full when triggering a
complete collection, we could trigger only a complete collection scan of
the old generation. The changes for this feature look like following:

Experimentation with this feature looks promising, but it seems that
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public boolean collectIncrementally() {
return getYoungUsedBytes().aboveOrEqual(getMaximumYoungGenerationSize());

}

Listing 7: Modified incremental collection condition.

there might be difficulties which can potentially arise in more complex
applications, such as live objects becoming unreachable. Thus, all of our
complete collections in the current version entail also incremental ones.

To enable the ROLP collection policy, one has to specify ByTimeWithRolp
as the initial collection policy. If one wants to modify the limit value
withFullPromotion to be a certain percentage of the maximum heap size,
the option PercentHeapThreshold can be adjusted to allow for it.

5.6 Summary

In this chapter, we have gone through our integration of ROLP into Serial
GC. We described in detail the profiling techniques we use, modifications
to the heap model, and how the OLD table is managed and utilized for
pretenuring.

In the next chapter, we evaluate our implementation and measure its
performance in terms of throughput and latency in comparison to regular
Native Image.
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Part III

Evaluation and Conclusion with
Future Work.
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Chapter 6

Evaluation

In this chapter we present the results from the different experiments
performed for ROLP together with SubstrateVM. We initially present
the setup of the hardware and software we perform the evaluations on.
Afterwards, we introduce the experiments we will be evaluating. Then
we go through the results of the experiments.

Throughout the chapter, we refer to the modified version of native image
simply as ROLP, whilst the unmodified native image version is referred
to as Vanilla.

6.1 Setup

In this section we provide an overview over the hardware which been
used for the experiments, as well as the versions of software modified and
utilized. Then, we present the most relevant runtime and build options
which have been set and modified for the experiments and give a brief
overview over the experiments we evaluate.

6.1.1 Specification

Type Value

Machine MacBook Pro (16-inch, 2019)
Operating System macOS catalina 10.15.7

Processor 2,6 GHz 6-Core Intel Core i7
Memory 16 GB 2667 MHz DDR4
Storage 512 GB SSD

Table 6.1: Specifications of the machine we performs the tests on.
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Type Value

GraalVM OpenJDK 64-Bit Server VM GraalVM 20.3.0-dev
JVMCI Build 25.262-b10-jvmci-20.20-b03, mixed mode

OpenJDK Version 1.8.0_262

Table 6.2: Specifications of the GraalVM version and required JVM.

The specifications of the hardware on which we perform the evaluations
can be seen in Table 6.1. The modified version of GraalVM and the utilized
OpenJDK and JVMCI versions can be seen in Table 6.2.

6.1.2 Memory Utilization

Before we introduce the experiments, we present some of the build and
runtime options relevant for the experiments. Most of these are at default
values set by the runtime, unless otherwise stated. The options presented
here differ from the ones present in section 5.1.2 in that they do not directly
influence the behaviour of ROLP, and mostly are related to the behaviour
of the runtime and memory utilization.

• Heap utilization is modified throughout our experiments. This is
to increase the predictability of our experiments, since by default
utilized heap size is set by sampling physical memory, which can
affect the GC behaviour significantly if available physical memory is
high. The most relevant options for heap utilization are:

. Maximum Heap Size which is set by with -R:MaxHeapSize as a
compilation option or -Xmx as a runtime option. By default uses
of 80% of total physical memory. This is the only option which
we directly modify for our applications.

. Minimum Heap Size, which is initialized to be the double of
the young generation size.

. Young Generation Size, which by default is set to 10% of the
maximum heap size (but not more than 268 MB).

• AlignedChunkSize at 1048.576 KB. This represents the size of a heap
chunk. A collection can trigger if a new aligned chunk is allocated or
required.

• LargeArrayThreshHold at 131.072 KB. Arrays above this size are
allocated in a separate unaligned chunk, which we do not profile.
This threshold is by default set to be at 1/8 of heap chunk size.

For Serial GC both with and without ROLP, the time-based complete
collections (see Section 4.1.2) have been disabled. This is due to
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their unpredictability at which times they can occur. In addition,
it makes it easier to compare the individual collection if they occur
approximately at the same heap threshold. Collections during our
evaluations only trigger if heap utilization reaches a threshold.

6.1.3 Experiments

There are two major applications which we evaluate, Circular Array and
Circular Hashmap. Both of them utilize object allocation heavily and thus
trigger the GC frequently. For all of the evaluations we present throughout
the chapter, we have made sure to run the experiments for a long enough
time for GC collection times to stabilize. We introduce the experiments in
the following sections.

Circular Array

In this application objects are allocated into an array in a circular style at
maximum throughput. This means that after the array is filled up, we
start over from the first index. The writing to the array continues for a set
amount of allocations. The options that are modifiable for the experiment
are:

• Amount of objects - This is the total amount of objects allocated into
the array throughout execution.

• Array size - Total size of the array. After the array is filled up, we
start allocating from the beginning of it, thus overwriting old objects.

• Read rate - Reading from the array reads an object from a random
index and performs some work on it. The work involves generation
of short-lived objects.

Modifying the size of the array impacts the performance of the GC. If
the array is relatively small compared to total heap size, objects are often
overwritten. This means a majority of objects die before promotion occurs.
If the size of the array is fairly large, newly allocated objects in the array
survive incremental collection.

We have two major experiments for the Circular Array experiment. One
which only involves writing to the array. In the second experiment, we
enable reading from the array. The results are presented in correspond-
ingly in Section 6.2.1 and Section 6.2.2. Condensed results for multiple
array sizes is presented in Section 6.2.3.
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Circular Hashmap

This application functions as a more complex version of the aforemen-
tioned Circular Array. Objects are allocated in the same away except that
the data-structure utilized as our cache is the builtin Hashmap implementa-
tion of Java. We utilize a simplified version of the Integer-class as our key
values, called CustomInteger. This is to prevent object generation from
autoboxing/unboxing.1 The options that are modifiable for the experi-
ment are:

• Amount of objects - This is the total amount of objects allocated into
the array throughout execution.

• Key bound - Since a hashmap is an unbounded data-structure, we
need an option which indicates the "end" of the cache.

• Read rate - To simulate utilization of values contained within the
cache. Produces short-lived objects.

When we reach the end of the cache, allocations into it begin anew from
the lowest index (CustomInteger containing value 0), overwriting old
values contained into the indexes we are inserting new objects.

In this experiment it is important to note that the hashmap produces a
considerable amount of objects on its own, being a non-primitive data-
structure. In addition, the keys it utilizes are also objects. This affects
the performance of the GC substantially. This is covered throughout
Section 6.2.4 and Section 6.2.5. Condensed results for multiple cache sizes
is presented in Section 6.2.6.

6.2 Results

In this section we present the results of the different experiments for the
applications covered throughout Section 6.1.3. For each of the experiments
we start of by covering the setup, before going through the results for
time spent performing collections, allocation time percentiles and overall
throughput.

6.2.1 Circular Array

The options that we run the experiment with are:

• -Xmx4g for the maximum heap size. This results in a maximum heap
of 4.3 GB and a young generation of 268 MB.

• 786 000 000 as total amount of allocations.
1https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
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(b) Collection times without FOT setup.

Figure 6.1: Collection times for Circular Array.

• 40 000 000 as cache size. This results in a fully-filled cache occupying
1.6 GB of the heap (37%).

• -H:FinalEpoch=8 to dictate the final profiling epoch to be 8. This
option is ROLP specific.

In this experiment, no reading from the array is performed.

Collection Times

We can see in Figure 6.1a that there is no incremental collections occurring
after profiling compared to the Vanilla run. The reason is that ROLP has
identified the majority of often allocated objects as long-lived. This is also
why we only see complete collections occurring. By eliminating the need
for incremental collections, we can see that the execution ends a significant
amount earlier, 47.2 seconds with ROLP, and 74.5 seconds for Vanilla. This
is the result of the 48% decrease in total time spent performing collections
compared to Vanilla.

A noticeable feature of Figure 6.1a is the increase in complete collection
time for ROLP. This the result of the need to setup the FOT (see
Section 5.4.2). If we do not consider the overhead from FOT setup, the
complete collection times are comparable to the run without ROLP, as seen
in Figure 6.1b.
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Figure 6.2: Allocation time percentiles. Each point is the percentile
for the time it takes to allocate 1 000 000 objects.

Allocation Time Percentiles

If we look at the amount of time it takes to allocate the objects in Figure 6.2
we can see that there is a slight increase in time spent between the 0-
90% percentiles for ROLP. The main reason for this is the need to make
a decision for each object before between placing it in the young or old
generation, which the Vanilla implementation avoids. However, we can
see that the collections have a huge impact for the highest percentiles,
with ROLP taking a significant time lower. This is because we eliminate a
significant amount of incremental collections, resulting in reduced long-
tail latencies. The worst percentiles outperform ROLP, due to slightly
longer complete collection times.

Throughput

In the throughput plot in Figure 6.3 the allocations are grouped into
4 second intervals. This is because a collection can extend passed 2
seconds, and by grouping allocations into data-points of 4 seconds we
can get a general overview of the allocation pattern throughout execution.
In this plot we can see after the initial dip during profiling, ROLP
achieves significantly higher throughput throughout the whole execution
compared to vanilla.

6.2.2 Circular Array with Read

In this experiment we have enabled reading from the array. The options
that we run the experiment with are:
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Figure 6.3: Throughput of Circular Array. The Y-axis depicts objects
allocated. The X-axis depicts execution time. Each point contains objects
allocated for intervals of 4 seconds.

• -Xmx4g for the maximum heap size. This results in a maximum heap
of 4.3 GB and a young generation of 268 MB.

• 786 000 000 as total amount of allocations.

• 40 000 000 as cache size. This results in a fully-filled cache occupying
1.6 GB of the heap (37%).

• Read rate of 2 000 000 objects per second.

• -H:FinalEpoch=8 to dictate the final profiling epoch to be 8. This
option is ROLP specific.

The results from the experiment can be seen in pages 71-72. In Figure 6.4
we have a execution run from the Circular Array application in which
reading from the array is enabled. Each read from the array produces a
short-lived object, which is indicated by the incremental collections. The
amount of incremental collections occurring is still substantially lower
than Vanilla, with only 42 incremental collections occurring for ROLP,
and 145 for Vanilla. This is because the only short-lived objects we have
identified are the ones that are being produced by the reading of the array.

Regarding individual collection times, we can see a slight increase in the
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time spent performing incremental collections in Figure 6.4. This is due
to the fact that the incremental collections perform some of the work
regarding setting up of the FOT.
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Figure 6.4: Collection times with reading.
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Figure 6.5: Collection times without FOT setup (with reading).
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Figure 6.6: Allocation time percentiles for Circular Array with reading.
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6.2.3 Discussing Results from Circular Array

We provide condensed results from different Circular Array runs in tables
in the following pages. What each of the columns represent is described
in a left-to-right order corresponding to the table in the following listing:

• The cache size is the size of the array. The percentage value next to
it describes the percentage of occupied heap size due to a full cache.

• Amount of incremental collections during the the whole execution.

• Amount of complete collections during the the whole execution.

• Total collection time.

• Total execution time.

In Table 6.3 and Table 6.4 the parameters for total amount of allocations
and heap size are the same as the ones defined for the Circular Array run
in Section 6.2.1. In the aforementioned tables we have strictly enabled
writing without reading. In Table 6.5 and Table 6.6 we show results with
enabled reading of 2 000 000 objects per second.

In all of the aforementioned tables, we can see that there is a significant
difference between ROLP and vanilla in the amount incremental collec-
tions which occur, across different cache sizes. Avoiding these incremental
collections with ROLP results in significantly lower collection times com-
pared to Vanilla, which equivalently decreases the amount of total execu-
tion time for the same amount of work.

At 80 000 000 cache size, we can see that results for ROLP lag behind
Vanilla in terms of total collection time. This is the result of utilizing 75%
of the heap size, which triggers complete collections more rapidly, as there
is less heap space. This is avoided to some degree by Vanilla because it
utilizes in addition 268 MBs of the young generation. However, results
with this cache size can be considered a special case, since increasing
maximum heap size would benefit ROLP here.
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Cache size Incremental Complete Collection time Execution time

10 000 000 (9%) 9 7 12.3s 30.0s

20 000 000 (19%) 9 8 16.9s 34.9s

40 000 000 (37%) 9 11 29.2s 47.2s

60 000 000 (56%) 9 17 55.6 73.5s

80 000 000 (75%) 9 41 153.5s 171.8s

Table 6.3: Statistics for ROLP for different Circular Array runs with only
writing enabled.

Cache size Incremental Complete Collection time Execution time

10 000 000 (9%) 88 6 31.1s 48.6s

20 000 000 (19%) 87 7 39.2 56.9s

40 000 000 (37%) 86 9 56.8s 74.5s

60 000 000 (56%) 83 12 79.3 91.1s

80 000 000 (75%) 74 21 122.0s 139.7s

Table 6.4: Statistics for Vanilla for different Circular Array with only writing
enabled.
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Cache size Incremental Complete Collection time Execution time

10 000 000 (9%) 29 7 14.2s 111.70s

20 000 000 (19%) 32 8 20.0s 122.9s

40 000 000 (37%) 42 11 38.1s 176.7s

60 000 000 (56%) 56 17 72.4s 251.7s

80 000 000 (75%) 92 41 194.0s 456.5s

Table 6.5: Statistics for ROLP for different Circular Array runs with writing
and reading enabled.

Cache size Incremental Complete Collection time Execution time

10 000 000 (9%) 124 6 35.6s 150.7s

20 000 000 (19%) 129 7 45.8s 174.5s

40 000 000 (37%) 143 9 71.1s 241.0s

60 000 000 (56%) 166 14 113.9s 358.0s

80 000 000 (75%) 156 28 183.0s 445.1s

Table 6.6: Statistics for vanilla for different Circular Array runs with writing
and reading enabled.
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(a) Collection times for hashmap.
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(b) Collection times without FOT setup.

Figure 6.8: Collection times for Circular Hashmap.

6.2.4 Circular Hashmap

The options that we run the experiment with are:

• -Xmx4g for the maximum heap size. This results in a maximum heap
of 4.3 GB and a young generation of 268 MB.

• 786 000 000 as total amount of allocations.

• 11 000 000 as key bound. This results in the hashmap occupying 1.45
GB of the heap (34%).

• -H:FinalEpoch=24 to dictate the final profiling epoch to be 24.

We require 24 epochs (compared to the 8 of Circular Array), to capture the
dynamic lifetime pattern of key-objects. All of the key-objects which are
produced until we reach the bound of the hashmap are long-lived. When
the hashmap is filled up, inserting key-values into the hashmap does not
exchange the previous keys, due to the fact that they contain the same
hashcode. Thus, the allocation site for the key objects is initially identified
as long-lived. However, key-objects after the hashmap is filled up become
short-lived. To capture this information of the key-objects, we have to
increase the profiling phase up until the 24th epoch.

In this experiment, no reading from the hashmap is performed.
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Figure 6.9: 0-99 percentile for Circular Hashmap. Each datapoint is the
amount of time spent allocating 1 000 000 objects.

Collection Times

A significant difference in the collection times for Circular Hashmap is the
prevalence of incremental collections for ROLP, as seen in Figure 6.8a. This
is due to the fact that even though all of the values in the hashmap are
identified as long-lived, all key objects generated after the hashmap has
been filled up are only used to overwrite values. Since the key objects
are already contained in the hashmap, they are not used beyond the
overwriting of values and are thus identified as short-lived.

Even given the amount of incremental collections, ROLP has still a
substantially amount lower of incremental collections. In this experiment,
ROLP achieves 101 incremental collections compared to the 160 of vanilla.
However, there seems to be an increase in individual complete collection
time of 21% in Figure 6.8a, even if we do not consider FOT setup as seen
in Figure 6.8b. We suspect this is the result of some unnecessary objects
being scanned due to the FOT setup.

Overall, ROLP manages to reduce the total collection time by around 25%
for the given run of Circular Hashmap. This results in a reduction of 10% of
total execution time.
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Figure 6.10: Throughput of Circular Hashmao. Each point contains objects
allocated for intervals of 4 seconds.

Allocation Time Percentiles

From the allocation times seen in Figure 6.9, we can see that ROLP
manages to delay the most lengthy allocations until the 88-90 percentiles.
This is the result of the reduction of incremental collection. However,
the highest percentiles have higher times with ROLP. This is the result of
ROLP having longer complete collection times.

Throughput

In Figure 6.10, we can see that ROLP manages to achieve higher
throughput. This is the result of less incremental collections impacting the
allocations. The spikes which occur are a result of the lengthy incremental
collection interruptions.

6.2.5 Circular Hashmap with Reading

The options that we run the experiment with are:

• -Xmx4g for the maximum heap size. This results in a maximum heap
of 4.3 GB and a young generation of 268 MB.

• 786 000 000 as total amount of allocations.

78



• 40 000 000 as cache size. This results in a fully-filled cache occupying
1.45 GB of the heap (34%).

• Read rate of 500 000 objects per second.

• -H:FinalEpoch=24 to dictate the final profiling epoch to be 24.

We present the results on the following pages. The collection time
results do not differ much compared to the Circular Hashmap with only
writing. Application execution takes approximately 2x time to finish,
both for Vanilla and ROLP. In addition there is an increase in incremental
collections occurring due to short-lived objects produced by the reading.
The amount of incremental collections equals 113 for ROLP and 193 for
vanilla.
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Figure 6.11: Collection times for Circular Hashmap with reading.
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Figure 6.12: Collection times for Circular Hashmap without FOT setup
(with reading).
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Figure 6.13: Allocation time percentiles for Circular Hashmap with reading.
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Figure 6.14: Throughput of Circular Hashmap with reading. The Y-axis is
amount of objects allocated.
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6.2.6 Discussing Results from Circular Hashmap

We provide condensed results from different Circular Hashmap runs in
tables in the following pages. The columns represent the same values as
presented in the previous tables for Circular Array, besides the value key
bound, which depicts the bound value of the hashmap.

In Table 6.7 and Table 6.8 the parameters for total amount of allocations
and heap size are the same as the ones defined for the Circular Hashmap
run in Section 6.2.4. In the aforementioned tables we have strictly enabled
writing without reading. In Table 6.9 and Table 6.10 we show results with
enabled reading of 500 000 objects per second. The amount of reads is 4x
lower than for Circular Array to avoid the lengthy execution times.

The results for amount of incremental collections occurring for ROLP and
Vanilla are mostly similar as for Circular Array, with a significant decrease
in incremental collections occurring for ROLP. A major difference is the
amount of incremental collections occurring in ROLP, due to short-lived
key objects. The collection time has also not as significant impact on total
execution time as for Circular Array, due to the overhead of objects being
allocated and the overhead from the ROLP collections.

However, much as the same way as for Circular Array, vanilla does not
start outperforming ROLP until we reach a key bound value of around
22 000 000, which results in 68% of total heap consumption. ROLP is
outperformed here due to the frequent and lengthy complete collections it
performs, which occur due to a rapidly filled heap.
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Key bound Incremental Complete Collection time Execution time

2 750 000 (8%) 102 7 22.5s 72.1s

5 500 000 (17%) 105 8 35.7s 88.6s

11 000 000 (34%) 102 10 52.1s 105.2s

16 500 000 (53%) 99 16 75.6 129.8s

22 000 000 (68%) 104 28 124.2s 178.6s

Table 6.7: Statistics for ROLP for different Circular Hashmap runs.

Key bound Incremental Complete Collection time Execution time

2 750 000 (8%) 184 4 38.9s 85.9s

5 500 000 (17%) 182 7 60.9 110.6s

11 000 000 (34%) 182 9 69.6s 120.2s

16 500 000 (53%) 178 14 86.1s 138.2s

22 000 000 (68%) 171 23 118.9.0s 171.4s

Table 6.8: Statistics for Vanilla for different Circular Hashmap runs.
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Key bound Incremental Complete Collection time Execution time

2 750 000 (8%) 110 7 24.2s 124.7s

5 500 000 (17%) 113 8 37.7s 149.3s

11 000 000 (34%) 113 10 53.0s 175.5s

16 500 000 (53%) 114 16 76.7 209.9s

22 000 000 (68%) 106 28 126.4s 279.3s

Table 6.9: Statistics for ROLP for different Circular Hashmap runs with
reading enabled.

Key bound Incremental Complete Collection time Execution time

2 750 000 (8%) 193 4 38.9s 142.3s

5 500 000 (17%) 193 7 60.9 178.5s

11 000 000 (34%) 194 9 69.6s 201.7s

16 500 000 (53%) 192 14 86.1s 226.7s

22 000 000 (68%) 185 25 118.9.0s 273.2s

Table 6.10: Statistics for Vanilla for different Circular Hashmap runs with
reading enabled.
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6.3 Summary

The results we have seen for the different experiments showcased that util-
izing ROLP can reduce overall collection times significantly for allocation
heavy applications. This results in higher overall throughput, not stag-
nated by incremental collections, which affect the Vanilla implementation
due to prevalence of object copying. In the next chapter, the requirements
we have set are addressed before presenting proposed future work. We
finish of by presenting the conclusion.
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Chapter 7

Conclusion

In this chapter we will start by discussing if we have met the requirements
defined in Chapter 1. We will then present future work which might be
possible to explore for the Native Image implementation of ROLP. We will
finish of by discussing what we have explored throughout the thesis and
our contributions.

7.1 Addressing the Requirements

In section 1.2 we outlined the requirements which our ROLP with Serial
GC version aimed to fulfill. This is how our final implementation behaved
according to them.

- Accurate pretenuring of objects in correlation to their allocation site
and lifetime.

We have managed to implement a object profiler for GraalVM Native
Image which allows the GC to pretenure objects according to their lifetime
correctly with high reliability. This is apparent in the reduction of
incremental collections, and the fact that necessary incremental collections
take significantly less time. However, the accuracy of the pretenuring can
depend on some factors, such as how many epochs the developer would
like to pretenure for.

- Good throughput during application execution in comparison to a
native image built without ROLP.

The evaluations we have shown in Chapter 6 have shown that throughput
gain can be significant with ROLP, if there are objects throughout the
application run which can be identified as long-lived. This is especially
true if most objects tend to be long-lived, which eliminates the need for
incremental collections significantly. There seems to be some overhead
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when it comes to complete collection times for some applications (such as
Circular Hashmap), but overall throughput is higher with ROLP.

- Good response time during application execution in comparison to a
native image built without ROLP.

The evaluations we have shown in Chapter 6 has shown that for
the experiments we have evaluated, GC pause times can be reduced
significantly for applications in which certain objects tend to be long lived.
This is done by eliminating the need for some incremental collections. In
addition, the incremental collections which do occur avoid high amount
of copying of objects.

7.2 Future Work

For future work the following can be explored:

• Memory leaks - One can utilize the lifetime information for each
allocation site to detect if a memory leak has occurred. Since each
allocation site contains statistics about how many promotions its
objects have survived, one could detect if there is a unexpected
number of objects either continuously surviving or being allocated.
We have not explored this in our work since we have mainly focused
on optimizing memory management decisions for the GC.

• Integrating dynamic profiling and TSS - These were implementa-
tion features which we were not capable to explore during this thesis.
Enabling both of these features would allow increase the reliability of
the pretenuring statistics and also enable long running applications
with complex allocation patterns to perform better.

• Evaluate with multiple survivor spaces - Native Image allows one
to specify the amount of survivor spaces the young generation
should consist of. By default it only consists of a single eden space.
By modifying MaxSurvivorSpaces option, one can enable multiple
survivor spaces between the young generation and the old one. It
would be interesting to see the results of pretenuring objects directly
into those spaces, and if it provides any more improvements towards
GC pause times.

• Evaluate with a realistic benchmark - The experiments we have
covered have been setup to mimic allocation heavy workloads.
Unfortunately, due to the time limitations of a master thesis, we did
have the capability to evaluate with a more realistic service-based
workload. This is something that could be explored in conjunction
with a microservice framework, to see if ROLP could perform well
in a more realistic environment.
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• Integration with Truffle - Integrating ROLP with the Truffle Lan-
guage Implementation Framework would allow us to enable ob-
ject pretenuring for a multitude of programming languages. There
already exists implementations of the Python and Ruby languages
on GraalVM based on the latest standards, in addition to several
other popular languages. The amount of work to enable ROLP for
these languages should not be a significant, as most of the ground
work is done.

7.3 Conclusion

In this thesis, we presented an object profiler known as ROLP for
the GraalVM Native Image which enabled object pretenuring for the
native GC. Through the utilization of ROLP, we showcased results with
significant reductions in GC pause times and increased throughput for a
number of applications built using the utility.

Enabling the profiler known as ROLP does not require significant
developer effort, working out-of-the-box for most application in which
object promotion is prevalent. With minor tweaking of the build and
runtime options, it can perform well for most applications.

We believe that ROLP is an important asset in object-oriented runtimes,
since they often deal with generational garbage collectors. The downside
of generational collection algorithms is that minor collections can occur
frequently, promoting a large number of objects which in turn impends on
the overall performance. By identifying often promoted objects through
the usage of ROLP, one can prevent a majority of collections by allocating
these objects directly in the survivor space.
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