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Abstract

In the past two decades, cloud computing has reformed the IT service market. Serverless as
its successor releases cloud users from heavy burdens of resources management and system
administration. The auto-scaling and finer billing granularity make serverless easy-to-use and
cost-efficient. However, serverless platforms are usually suffering the high latency caused by
cold starts. Duplicated allocation of language runtimes, libraries and shareable program state
for different invocations causes a huge waste of memory.

A recent work, Photons, enables collocation of functions of the same user inside the same
runtime. Photons reduce the memory footprint and the number of overall cold starts by a lot
without performance degradation. However, Photons are implemented in the normal JVM,
which still suffers from slow starts and a large memory footprint. All objects of concurrent
invocations are located on the common object heap. Heavy burdens of garbage collection causes
high response tail latency.

In this project, we design and implement a serverless proxy runtime using GraalVM Native
Image Isolate. Native Image Isolate supplies better isolation for collocated invocations. Sepa-
rated heap spaces enable more efficient independent memory management, while state sharing
among different isolates becomes difficult. Ahead-of-time compilation makes isolate proxy start
up fast with low memory footprint. We propose isolate pooling and shared isolate to enable ob-
ject caching and state sharing in our design. Different workloads are introduced to evaluate our
isolate proxy. Isolate proxy can reduce runtime memory footprint by up to 59% and starts up
10x faster, with slightly a lower peak throughput compared to Photons. For memory-intensive
workloads, distributed garbage collection reduces worst-case latency up to 50%. We use re-
alistic serverless invocations pattern to perform a cluster-wide event-driven simulation, which
shows that our isolate proxy can reduce the overall cluster memory usage by 30% while keep-
ing slightly better overall response time compared to Photons. These results indicate that it
is worthy to trade fast start up and low memory footprint for peak performance in serverless
context.
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1

Introduction

In the past two decades, cloud computing has reformed the IT service market. Cloud computing
provides computing as a utility and allows users to pay as they use per second with a minimum
of one minute [EC2]. However, in traditional cloud services, heavy burdens of resources scal-
ing and system administration are left to cloud users. The emergence of serverless platform
solved this problem. Serverless provides auto-scaling, adding system elasticity without server
provisioning effort from end users. Finer pricing granularity down to even 1ms [Lam] also
makes a big step forward to truly pay-as-you-use manner. Regular serverless platforms allocate
independent VM instances for different invocations.

Allocating VM instances duplicates of language runtime, libraries and shareable program state
such as machine learning model not only causes huge waste, but makes slow cold starts problem
more severe. Dukic et al. [DBSA20] proposed a new sharing schema, Photons, to address these
issues. Photons allow collocation of same functions from same user inside the same runtime.
Using bytecode manipulation, Photons separate private states for each invocation to guarantee
the correctness of their execution. Under proper resource configurations, Photons can scale
out without performance degradation. Using Photons saves large fraction of system memory
footprint for concurrent invocations and reduce the number of overall cold starts significantly.

1.1 Motivation

Although the design of Photons is simple and practical, there are still some problems. First,
the Bytecode manipulation is prone to errors and difficult for debugging in source code level.
Reflective operations have to be manually delegated in the framework as well. Second, concur-
rent invocations allocate objects on the common garbage heap of Java Virtual Machine (JVM).
Accumulated burdens of garbage collection may cause high response latency. Just-In-Time
compiler of normal JVM profiles and compiles in the background all the time, potentially hav-
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ing resources contention with the executing invocation. Furthermore, normal JVMs still suffer
slow start up and consumes large memory footprint.

GraalVM Native Image compiles Java application ahead-of-time into a standalone executable,
with faster startup and much lower memory footprint. Native Image Isolates allow multiple
VM instances with separated heaps within one process. Isolated heap space guarantees correct
execution inside each isolate, while making it difficult for state sharing.

To achieve runtime sharing as in Photons, we use different isolates to execute concurrent in-
vocations. Isolate separates private states of invocation automatically, ensuring the correctness
execution of each invocation. During implementation, we find object caching is critical for
performance, and state sharing is necessary for many workloads. Despite of the restrictions of
isolate, we propose our solutions of isolate pooling and shared isolate to enable these features.
Based on our implementation, we perform machine local evaluation using different workloads.
We find that isolate proxy has significantly faster start up and much lower memory footprint. On
the other hand, JIT compiler of fully-fledged JVM used in photons proxy can achieve higher
peak throughput. In order to study this trade-off, we use realistic production traces together
with our measurements to run cluster-wide event-driven simulation. Simulation result shows
that, with lower overall memory consumption, isolate proxy encounters less cold starts under
same restricted cluster size. Shorter cold start time and faster ramp-up let isolate proxy always
have better response latency. Our work reveals that it is worthy to trade fast start up and low
memory footprint for peak throughput in the serverless context.

1.2 Thesis Structure

In the second chapter, we introduce the evolution of cloud computing, pointing out the attrac-
tiveness and problems of serverless. We explain the design philosophy and system architecture
of Photons, analyzing its problems in detail. Lastly, we introduce the GraalVM Native Image
and Native Image Isolate, using sample code to illustrate Isolate life cycle.

In Chapter three, we start by explaining serverless system architecture for Isolate proxy. Then
we study the overhead to use Isolate and argument passing between different Isolates to examine
our design decisions. At the end of this chapter, we propose our solutions for object caching
and state sharing.

In Chapter four, we introduce four different workloads, showing the strengths and weaknesses
of using Isolate proxy based on results of machine-local evaluation.

In Chapter five, we introduce the simulation traces and simulator logic. Then we discuss the
design trade-off based on the simulation results.

At last, we discuss related works and give conclusion and outlook for our project in chapter six
and seven.
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2

Background

In this chapter, we introduce more about serverless computing and serverless platform. Then
we go into details about Photons [DBSA20], analyse how authors of Photons leverage runtime
sharing and ensure the correct execution of each shared invocation. Based on the analysis of
Photons, we also point out the drawbacks of their solution. To address those issues, we study
Graal Virtual Machine (GraalVM) and GraalVM Native Image (GraalVM NI), highlight its
features, and discuss the possibility it provides us.

2.1 Evolution of Cloud Computing

As we already introduced in the beginning of Chapter 1, serverless has come into more and more
developers’ mind. Due to a survey from Serverless Inc in 2018 [Pas], 82% participants indicate
that they have used serverless at their work, whereas only 42% participants in the previous year
(2017). There are many companies, which have no public cloud experience before, choosing to
start with serverless as their first cloud computing service. What leads to the boost of serverless
computing? To answer this question, we start by introducing the traditional serverful computing
and then exploring the attractiveness of using serverless.

For many years, huge internet companies have been developing their own data centers to deal
with their increasing business demand. Until early 2000s, large scale data centers could be
equipped with a great number of commodity computers due to development of distributed sys-
tem technologies. These computer clusters are designed to be highly elastic. They are capable
to deal with highest peak demand and stay idle to save power when no requests come in. Al-
though application of commodity computers has already reduced the data centers’ cost by a lot,
there are still many idle machines during off-season not being properly utilized. After building
up data center infrastructures and technologies to manage large-scare distributed system, huge
internet companies were seeking new revenue opportunity to increase utilization of their data
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centers during off-season, for example by supplying services to third parties. Cost of building
infrastructure would then be amortized, which in turn makes their public cloud service more
price competitive than cloud users building their own computing facilities. Higher utilization
increases power-efficiency of data centers as well. Since the success of Elastic Compute Cloud
(EC2), which was first released by Amazon.com back in 2006, big companies like Microsoft,
Google, IBM, Oracle etc. have released their own cloud computing platform one after another.

Cloud Computing provides computing as a utility, giving users the illusion of infinite amount of
resources as they need [AFG+10]. Serverful Cloud Computing charges per allocated resources.
This supplies the opportunity for many companies to save their cost. They can choose to use
small amount of machines on the cloud at the start of their business, then increase their service
capacity as their demand increases, instead of investing their own large data center. On the
other hand, if the application is capable for parallel computing, such as batch processing, users
could choose more computing resources for the exchange of shorter execution time with nearly
the same cost. Cloud providers also charge resources usage using time-based pricing policy.
This encourages users to release computing resource when they do not need them. Highly
virtualization of hardware resources inside data center supplies the possibility for workloads
multiplexing, which in turn increase data center utilization and reduce the cloud providers’
cost. As predicted by [AFG+10], cloud computing has rapidly grown in the past ten years and
has become one of the bases of IT industry. Main obstacles pointed by [AFG+10] have been
addressed, and we are already in the Cloud Era.

Cloud platform, like EC2, provides users great flexibility to select Operating Systems, Libraries
and Programming Languages as they like. However, administration of such an huge system is
cloud users’ responsibility. Aspects like scaling, deployment, fault tolerance, instance selec-
tion, security patches, monitoring, logging etc. still need cloud users to care about [JSSS+19].
Using serverful cloud computing reduces the difficulty and cost to build data center hardware
facilities but does not reduce the difficulty to operate distributed applications for a huge size-
changing cluster. Therefore, many open-source software showed up in the past years, trying to
fill this gap. Kubernetes, developed from Google internal tools, aiming for container manage-
ment, has been widely used for automatically deploying (micro)services. It supplies so called
"container orchestration", which takes care of "scaling and failover" for the application running
on distributed systems. For example, Kubernetes can be configured to add new containers and
discard already existed containers automatically. When some container in the system is down
due to system failure, Kubernetes replaces it in the background. What’s more, after resources
(such as number of CPUs and amount of RAM) of each container has been properly configured,
Kubernetes tries to bin pack deployed containers, achieving a high usability of cluster resources
[Wha].

Open-source automation software supplies convenience for container management, while a new
cloud computing paradigm, Serverless, wants to release all resource management and system
administration from end users. Serverless aims to reuse idle resouces in a much finer time-
granularity, while supplying enormous automatic elasticity. Amazon.com first released their
Function-as-a-Service production AWS Lambda back in 2015. AWS Lambda discards the man-
agement and administration of servers from cloud users and simplifies the development difficul-
ties for cloud native applications by a lot [AWSb]. Right now, serverless users just need to write
their application code using vendor supported programming languages, set up event triggers for
their application and then make deployment to the cloud. All other parts of system management

4
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would be taken care of by cloud vendors, and so is this manner of computing called serverless,
though it does use servers to run the application code. Another innovative step of serverless
computing is the finer pay-as-you-use pricing policy. Under serverful cloud computing pricing
model, like in EC2, users can be billed per-second increments with a minimum of 60 seconds
[EC2]. Serverless computing reduces this granularity further down to 100ms and recently even
down to 1ms [Lam]. Billing time with serverless is very close to real execution time of the
application. Finer billing granularity reduces the cost of cloud users by excluding unused mil-
liseconds from their bill. Cloud users do not need to waste time to "optimize" their application
to utilize that whole second. This is also the key difference to those serverful systems using
Kubernetes. Those systems supply similar container management functionality as serverless.
However, users are still charged per second or even per hour, even if the allocated resources are
idle for most of the time [JSSS+19]. Serverless platform has the ability of automatically scaling
up and down (to zero) with high elasticity. Just like the description given in [JSSS+19], server-
less "represents an evolution that parallels the transition from assembly language to high-level
programming language".

Serverless typically allocates different VM instances to execute different invocations. Start up
time of VM instances is very high comparing to the execution time of invocations. Therefore,
after each invocation, VM instances are kept alive for some time, avoiding cold start for potential
successive invocations. However, due to the absence of infinite memory resources, warm VM
instances cannot be kept forever in the memory. Memory footprint and startup latency are
therefore the main aspects need to be improved in serverless platform.

While independent execution environment for each invocation supplies more safety and secu-
rity, it creates a lot of resource duplication. Language runtime, libraries, shareable application
state etc. are allocated multiple times in each VM instance as well, which causes huge waste of
memory resources. Recent work Photons [DBSA20] proposed a new sharing schema, trying to
alleviate this issue.

Although serverless is attractive enough to make more companies use cloud computing, there
are still many improvements to be made. One good example is the large memory footprint of
invocations and response time latency caused by cold start up. For safety and security reasons,
today’s serverless platforms [ABI+20] [Apaa] are scheduling each concurrent invocations into
different executing environments, even if those invocations are running same code snippets
triggered by the same cloud user. We take system architecture of Apache OpenWhisk [Apaa]
as an example to illustrate this.

In Figure 2.1 we can see that, after serverless application being deployed to OpenWhisk, there
is an event interface exposed to cloud users. If we take RESTful service as an example, REST
API Interface would be applied here. Load balancer and controller sits behind REST interface,
sending those requests further to message queues. Message queue dispatches the requests to
different invokers, which takes care of assigning a container to execute that invocation. Af-
ter invocation finishes, today’s platform usually keeps those warm containers for some time
according to different schedule policy. If there is any successive invocation coming in, warm
container can directly be assigned to deal with it, without suffering from another cold startup.
Keeping a pool of warm containers can reduce many cold starts and has been applied by many
cloud providers. However, this does not reduce cold starts for concurrent invocations. Each one
of concurrent invocation is dispatched into different containers in most of serverless platforms.

5



2 Background

Figure 2.1: Apache OpenWhisk System Architecture, adapted from [Apaa]

Realistic serverless invocation statistics released by [SFIG+20] indicates that there are large
number of invocations of the same function from same users are coming concurrently, so there
would be a huge benefits to enable execution environment sharing among them. Since same
functions from same user have same environment requirement, using different containers to run
them causes a huge waste of memory. On the other hand, each concurrent invocation has to
wait for runtime initialization and library loading etc. until it can be handled. This also causes
significant higher response time latency.

2.2 Runtime sharing enabled by Photons

Dukic et al. study the above problem and propose a new framework called Photons [DBSA20],
using language runtime sharing to reduce invocation memory footprint and reduce overall cold
starts by a lot. In their work, authors start by studying the shareable memory components
using Python and Java runtime running an image-classification workload. As illustrated in
Figure 2.2, they find that most of memory usage consisting of runtime, libraries and machine
learning model itself, which are same for each of the concurrent invocation. They argue that
the isolation via different containers for same functions of same user is redundant, and it is
possible to allocate parallel invocation inside same execution environment (container), as long
as proper runtime-level isolation being performed to separate private state of each invocation,
plus appropriate resource scaling configuration in order to keep minimal possible performance
contention. Once these can be done, we may save a lot memory footprint and experience much
fewer cold starts.

Based on Photons’ design, there is a new sharing schema for same functions from same user.
As illustrated in Figure 2.3, language runtime, invocation handler and shared state (such as
machine learning model) are now shared among concurrent same invocations. Private state of
each invocation will be separated by Photons automatically, such that each invocation could

6



2.2 Runtime sharing enabled by Photons

Figure 2.2: Runtime Memory Breakdown for
Java and Python [DBSA20] Figure 2.3: Sharing Schema of Regular Container

and Photons [DBSA20]

be executed correctly. Using this abstraction, Photons enable collocation of same function
invocations from same user inside a common execution environment. Under the experiments
using Java Virtual Machine (JVM) as the runtime, Photons can "save memory consumption
by 25% to 98% per invocation under at most 5% performance degradation and can reduce the
overall memory utilization by 30%, and the total number of cold starts by 52%" [DBSA20].

Invocation-dependent private states consist of two parts: mutable static fields and static initializ-
ers. Mutable static fields need to be transformed to invocation-local fields, and static initializers
need to be executed per invocation as well. On JVM, Photons use bytecode manipulation to
achieve this separation. They design a class loader using Javassist [CN03], performing byte-
code transformation during class loading (application initialization per jar file). For mutable
static fields, class loader will generate corresponding variables for each invocation. Newly
generated variables will be stored in a hash table, while original variable declaration would be
removed. Besides the declarations of those static fields, any read or write access to them need to
be detoured to the hash table. Transformed variables will be identified by invocation-distinguish
identifiers. After this step, static initializers would be cloned into some method, which would
be executed before each invocation, so that static fields can be properly initialized for each
invocation. The original static initializers would be deleted to avoid duplicated initialization.
Finally, to avoid possible memory leakage after each invocation finishes, authors of Photons
select WeakHashMap in Java to store transformed static variables. Non-reachable objects af-
ter each invocation would be automatically removed by runtime garbage collector. Using this
method, Photons ensures the correct execution of each concurrent invocation.

Since all the invocations are using the common heap, it is also easy to establish a global object
store for convenient state sharing. Large objects, like data base connections, are expensive
to be initialized. Using the global object store, Photons could cache pool of connections per
invocation. Large shareable object, like machine learning model singleton, can also be easily
shared using this data structure.

7



2 Background

2.2.1 Photons System Architecture

To integrate Photons into existing platform, e.g. Apache OpenWhisk, several modifications
need to be made. To allow collocation of different invocations of same function from same user
inside a shared runtime, the logic of invocation dispatcher need to be changed. Besides that, the
OpenWhisk runtime for Java needs to be modified by adding step for bytecode manipulation.
Due to source code of Apache OpenWhisk runtime for Java [Apab], the application is nothing
but a Hypertext Transfer Protocol (HTTP) proxy. The proxy instruments two different handlers
to deal with service initialization and function invocation. Cloud users compile and build their
serverless function (also called Action in OpenWhisk terminology) as a jar file and send the jar
file to the proxy for action initialization. All OpenWhisk Java actions are supposed to have a
main function with the following signature:
public static JsonObject main(JsonObject args);

During action initialization, proxy receives the jar file using initialization handler and saves it to
local file system. A jar file loader searches and registers the main function with the above sig-
nature into a runtime class loader. Once initialization has been done, proxy is built into docker
image and deployed to serverless system. When invocation comes, a Docker container would
be instantiated. Invocation handler parses the input arguments of com.google.gson.JsonObject
format, invokes the registered main function using reflection, gets return value of application
code and send it back as HTTP response.

Figure 2.4: Service Architecture for Photons

As illustrated in Figure 2.4, Photons 1.0 1 modifies the initialization handler of the proxy. In
addition to registering main function, a modified class loader performs bytecode manipulation at
the same time, separating private states in application code. When multiple same invocations are
coming simultaneously, Photons 1.0 keeps pool of threads and dispatches different threads for
different invocations. While all invocations have their thread-local invocation stack, all objects
are allocated inside a common runtime heap space. As we mentioned before, this enables
convenient state sharing among different invocations. To support this, Photons 1.0 uses a global
Map data structure and assigns unique identifiers to each thread. These two parameters have
been added to the main function signature [Pho]:
public static JsonObject main(JsonObject args, Map<String, Object> globals, int id);

1Since we are using same idea of collocation from Photons, we also refer original Photons work as Photons 1.0
interchangeably.

8



2.3 Graal Virtual Machine

Using this key-value store, application state, such as image classifier object, can be stored into
this map structure and retrieved by each invocation running inside the current runtime. We
denote the modified proxy used by Photons as photons proxy.

2.2.2 Problems of Photons

Photons’ design is clean and easy to implement. However, there are some problems with the
current solution. Firstly, the correctness issues: bytecode manipulation is fallible to errors,
making debugging difficult from source code level. Besides, using a modified class loader
will trigger problems if application code refers libraries containing reflective operations. Such
operations are not aware for modified class loader before application being executed and need
manually configuration in Photons’ framework code. Classes invoking reflections need to be
delegated to modified class loader, such that they can be properly loaded when they are accessed.
Second, the performance issue.

Using common heap space makes it easy for state sharing. However, it adds a lot burden to the
runtime garbage collector. Objects from all invocations would be allocated onto the same heap.
Accumulated non-reachable objects would make full garbage collection pause longer, which in
turn increase the invocation response latency. At the same time, Java runtime, like HotSpotTM

VM, uses Just-In-Time compiler to profile code execution statics and perform optimization via
compiling hot code snippets down to native code. This extra work consumes CPU resources
and may add response time latency as well.

Last, there are still some issues that Photons have not addressed. On the one hand, although only
private state memory footprint needs to be allocated when concurrent invocations are coming,
the "offset" memory footprint of runtime and libraries is still non-neglectable. On the other
hand, startup time of JVM is also very high. To solve the above problems, we get inspiration
from a newly developed Java Virtual Machine, the Graal Virtual Machine (GraalVM), especially
the Ahead-of-Time compilation technology it supplies, the GraalVM Native Image.

2.3 Graal Virtual Machine

GraalVM consists of three main components: Graal compiler, Truffle framework and Native
Image. Graal compiler is a high-performance Just-In-Time (JIT) compiler developed in Java,
aiming to replace C2 compiler in Java HotSpotTM VM against Java-level JVM Compiler Inter-
face (JVMCI) proposed in JEP243 [JEP]. Graal compiler integrates many innovative compiler
optimization technologies and can be further optimized and transformed to a more efficient
version of itself via JIT compilation.

On the other hand, to help other programming language leveraging advanced runtime technolo-
gies, Würthinger et al. [WWW+13] proposed the Truffle Language Implementation Framework
(Truffle). The architecture of Truffle and GraalVM compiler can be found in Figure 2.5. Truf-
fle is a library that supports implementing language interpreters for self-modifying Abstract
Syntax Trees (AST). They modify Java HotSpotTM VM with Graal compiler, which uses specu-
lative assumptions and deoptimization to produce efficient machine code in an adaptive manner.
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Figure 2.5: GraalVM Architecture. [Int]

Intermediate representation can be optimized and executed by the GraalVM.

Lastly, normal JVMs are suffering from slow start and high memory footprint. This comes
especially problematic under serverless and microservice context, where runtime instances have
to be frequently started up and memory usage is critical. Based on this, Wimmer et al. developed
GraalVM Native Image to build Java application into standalone executable [WSH+19], aiming
for faster star up and lower memory footprint.

2.3.1 GraalVM Native Image

Unlike traditional JVMs with JIT compilation, GraalVM Native Image transforms the compiled
bytecode into a standalone executable (called a native image), which can be directly executed
on the target platform. GraalVM Native Image does not have a JIT compiler, so it does not
need the fully fledged JVM either. Instead, SubstrateVM would be integrated into Native Image
executable, providing necessary subset of JVM functionalities such as memory management
and thread scheduling [sub].

Native Image uses iterative points-to analysis [Hin01] [Ryd03] [SB15], heap snapshotting [Ung95]
and Ahead-of-time compilation [PTB+97] to build the image. In the first step, Native Image
builder performs the iterative points-to analysis, trying to find all reachable code and classes
during running time by executing the application. Collected reachable classes in the current
iteration will be start points of analysis in the next iteration. Points-to analysis would continue
until there is no additional reachable class can be found. After the analysis reached convergence,
all reachable safe classes inside heap, including the native image runtime, would be snapshotted
into Image Heap, which is part of native image executable and directly accessible after native
image starts [Claa]. This shifts parts of class loading and initialization to image build time,
speed up executable start up. On the other hand, memory footprint of executable would be
significant smaller, since only analysed reachable classes and code snippets would be included
into native image. An AOT compiler, modified from the decoupled Graal compiler will then
take result of points-to analysis as input, producing highly optimized machine code ahead of
time. Modified AOT compiler performs many compilation optimizations like constant folding,
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inline expansion, partial escape analysis etc. Analysis result would also help AOT compiler to
determine which objects will not be modified during run time, even they are not declared as
final. This will assist AOT compiler producing more efficient machine code. [WSH+19]

After executable starts up, Image Heap can be treated as part of normal Java heap. Initialized
classes inside Image Heap will not be checked for initialization during run time, which reduce
a lot runtime overhead. However, not all classes can be initialized during image build time.
Methods that calling native code will not be considered as safe methods, since native code
is not analysed by native image. For example, objects keeping TCP connections will not be
initialized into Image Heap, as this kind of native resources would change during application
run time. In addition, those virtual methods invocations that can not be reduced to specific
single target, would be treated by native image as unsafe as well. Many dynamic dispatches can
not be simplified before application execution and native image will not do safety analysis for
every possible implementation in order to reduce analysis problem set size. [Claa]

The goal of GraalVM Native Image is to make Java application start up fast with low mem-
ory footprint. To achieve this, Native Image make a closed-world assumption, i.e. all possible
classes need to be known during image build time. However, features like dynamic class load-
ing, Java Native Interface (JNI), reflection, serializations, Dynamic Proxy etc. bring dynamic
flexibility for the programmer together with uncertainty for the AOT compiler. Under the re-
striction of closed-world assumption, all accessible classes during run time need to be config-
ured during image build time. [NIO] Besides manual configurations, Native Image supplies a
trace agent [Tra], which can track all aforementioned accesses and generate necessary config-
urations. Before image building, users can run their applications on normal JVM with trace
agent, generate necessary configurations, then build their applications into native image. Since
cloud users need to profile their applications resource usage before deployment anyway, this
automatic configuration theoretically will not add further complexity for users to deploy their
application. Developers do not need to figure out reflections by themselves and add delegation
code manually as they are using Photons.

Without run time profiling, AOT compilation can hardly produce the best possible JIT-compiled
machine code, even though it may take more time to perform compilation optimizations. To fur-
ther improve the performance of native image, GraalVM also supplies Profile-guided Optimiza-
tions (PGO). Users can run their applications on normal JVMs, collecting workloads profiles.
Based on these statistics, native image can perform workload-specific optimization. So long
as real workloads conform to that from profiling stage, optimized native image can improve
execution speed. If the workloads are different than that being collected earlier, native image
would have worse performance. Native Image also supplied Compressed References, "using
32-bit references to Java objects on 64-bit architectures" [Wim]. This can further reduce the
memory footprint of native image.

Even with PGO, Native Image can only approximate the peak performance of a fully fledged
JVM equipped with JIT compiler. By choosing Native Image, we are trading memory footprint
and fast startup for peak throughput.
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2.3.2 Native Image Isolate

GraalVM Native Image is fit for cloud native applications because of its low memory footprint
and fast start up. We also want to collocate different invocations inside common runtime to
leverage the benefits of Photons. In Photons, bytecode manipulation was applied for separating
private state for different invocations. GraalVM Native Image supplies another layer of abstrac-
tion, called Isolates, providing runtime-level isolation, which would be a good match for this
use case.

Figure 2.6: GraalVM Native Image Isolate Memory Layout. [Wim]

Isolates are lightweight VM instances based on SubstrateVM. As illustrated in Figure 2.6, each
isolate has its own heap space. AOT compiled code are immutable and would be shared by
all isolates. Image Heap with all initialized objects during building time would be shared by
newly produced isolates under a Copy-on-write (COW) manner. Modification will be done in
the copied version of original resource and unmodified parts will be directly referenced. Using
this manner, creation of new Isolate can be done with high speed and minimal memory overhead
[Wim]. Under COW, static mutable fields would have different instances in different Isolates,
i.e. they will be copied to isolate-local when they are modified. Similarly, static initializers
would also be executed inside each Isolate separately. When we run different invocations inside
different Isolates, private state separation can be automatically achieved.

Since Isolate is lightweight VM instance, garbage collection is performed inside different Iso-
lates independently. Comparing to common heap space for all invocations back to Photons,
distributed manner of GC would have benefits for shorter GC pause and in turn better response
time latency[WGW+11]. In additional to that, fully separated heap spaces provide security sup-
port as well, avoiding possible erroneous access from different invocations (even from different
users). After invocation finishes, Isolate can be torn down, releasing all memory it allocated
back to operating systems, which is much faster than garbage collection procedure. [WSH+19]
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Native Image Isolate Java API

In this part, we want to combine the Native Image Java API to elaborate Isolate life cycle. Native
Image Isolate supplies both Java and C API, while we only focus on Java API here. In Native
Image Java API, there are mainly two types being used for Isolate management, i.e. Isolate and
IsolateThread. Although they are declared as Java interface, they are PointerBase type, which is
not Java objects [Wim]. These types are more similar to pointers in C/C++, where Isolate points
to runtime data structure for an Isolate and IsolateThread points to the runtime data structure
for a thread, which is associated to some Isolate [NIJ]. Different threads attaching to the same
Isolate will have different ThreadIsolate values, while the Isolate value for all attached threads
would be the same. In other words, Isolate is the main descriptor of one Isolate and one will
have the full access to that Isolate using this value [Wim]. Although these types are similar to
pointers in C/C++, there is no specification of the pointed data structure, so it is not allowed to
dereference the underlying data structure using these values.

The following code snippet, inspired by [Wim], illustrates the typical life cycle of an Isolate.
Method run is executed in the default Isolate and stepIntoIsolate is executed in the newly pro-
duced Isolate (denoted as working Isolate).

1 public static void run(int size){
2 IsolateThread processContext = Isolates.createIsolate(
3 Isolates.CreateIsolateParameters.getDefault()
4 );
5 stepIntoIsolate(processContext,size);
6 Isolates.tearDownIsolate(processContext);
7 }
8

9 @CEntryPoint
10 private static void stepIntoIsolate(@CEntryPoint.IsolateThreadContext
11 IsolateThread processContext,
12 int size){
13 dummy_workload(size);
14 }

In line 2-4, we create a new Isolate using default parameters and attach current thread to that
Isolate. The returned IsolateThread points to the associated thread-local structure for working
Isolate. At this point, we are still inside the default Isolate. Working Isolate is inactive for the
current thread, though we have attached to it. The actual isolate-transition happens when we
call a method denoted by @CEntryPoint.

As its name indicates, methods annotated by @CEntryPoint work as VM entry-point. They
should be static and would be called as a C function. Exactly one parameter of this method is
supposed to be the target execution context, which can either be IsolateThread or Isolate with
corresponding annotation [NIJ]. When we invoke entry-point method, the current thread first
leaves the default Isolate. At this point, both Isolates are inactive, until the thread enters and
activates the target Isolate. This ensures that there is at most one active Isolate for a single
thread and no thread can access object reference across different Isolates. Inside entry-point
function, we can perform both native function call and Java method invocation. When entry-
point function returns, we go back to the default (callee) Isolate by experiencing the same states
transition.

If we want to discard an Isolate, we may tear it down as shown in line 6. Any attached thread
may tear down the associated Isolate. By calling tear down, current thread sends notification
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to all other attached threads and wait until all of them have detached. It’s not possible to force
tear down an Isolate while other threads are still attached, even if they are not running. Possible
resources hold by other threads need to be released and therefore tearing down an Isolate with
multiple attached threads needs to be carefully organized. In our case, if there is no other thread
attaching to working Isolate after entry point function returns, we can tear down the working
Isolate, releasing all memory it has allocated back to the operating system.

In additional to target execution context, entry-point function can also take other parameters.
Those parameters can only be primitive Java values, enum values and word values (such as
IsolateThread and Isolate). Since one thread can not access two different heap spaces simulta-
neously and therefore by no means access objects in other heap space via reference. Different
heap spaces supply high quality isolation, also makes it impossible to have a global object share
[WSH+19]. This adds additional overhead for arguments passing between Isolates. We study
this overhead in the next chapter.

Using Native Image as runtime in serverless context, we can leverage its high startup speed
and low memory footprint. Lower start up time speeds up the scale-out procedure, adding
system elasticity. It can also reduce response latency to improve service quality. By using
Isolate to execute concurrent invocations, we can benefit from its execution safety and efficient
independent memory management. Distributed garbage collection would speed up memory-
intensive applications while keeping the benefits of using runtime sharing. At the same time,
separated heap spaces also add additional overhead for message passing and make it difficult
to share state, since it is impossible to pass object references between isolates. In this project,
we design and implement Native Image Isolate proxy, evaluating its performance in different
dimensions. In addition to that, we also use cluster-wide simulation to show the design trade-off
by using our approach under realistic serverless production trace.
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System Design and Implementation

In the previous chapter, we discuss the motivation to integrate GraalVM Native Image Isolates
into a serverless platform. In this chapter, we first elaborate the modified system structure
using this technology. Based on Native Image Java API, we implement two mini-benchmark
applications. Using the first application, we determine the overhead to create and tear down
an Isolate. In the second one, we measure the speed of argument passing between different
Isolates. Lastly, we give our solutions for object caching and state sharing for the Native Image
Isolate proxy.

3.1 Serverless with Native Image

Figure 3.1: Service Architecture for Native Image Isolate

To integrate GraalVM Native Image to this system, we need to replace the OpenWhisk Java
runtime with our customized standalone executable. Since Native Image uses AOT compilation,
proxy code and application code need to be compiled together. In this case, we can invoke main
function directly instead of using class loader to invoke main function via reflective operation.
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Code for initialization, including class loader and initialization handler, can be discarded in our
GraalVM Native Image Isolate Proxy (denoted as isolate proxy).

During action initialization, cloud users need to perform the same procedure as by regular Open-
Whisk or Photons 1.0, i.e. compile and run their application locally on normal JVM to profile
CPU and memory requirement of it. In addition to that, they also need to launch the proxy using
Native Image trace agent to collect configurations for native image builder. GraalVM tracing
agent attaches to JVM, recording Java application behavior and collecting usage of reflections,
JNI, proxy, resource and serialization. It generates configuration files for native image builder.

Proxy needs to be tested by realistic invocations, such that all dynamic behavior can be cap-
tured by the tracing agent. If the closed-world assumption of native-image builder is violated,
i.e. native image is going to instantiate any class during run time that it has not seen before,
exception would be then triggered. With all the configuration files automatically generated by
tracing agent, developers can use native-image tool to build the application into the standalone
executable, without further manual configuration.

Since native image is going to be standalone, all libraries and project dependencies need to
be included into jar file (a fat jar). native-image would perform analysis and optimization,
building Java application into executable binary file. This procedure can be highly memory and
CPU-consuming. The produced native image can be directly launched on target platform. We
copy it into Docker image and finish the action deployment. As depicted in Figure 3.1, isolate
proxy also deal with concurrent invocations using different threads as in Photons 1.0. Each
thread attaches to an Isolate and finishes the invocation inside that Isolate. Different to Photons,
each Isolate has its own heap space, while code and Image Heap are still be shared. Instead
of using bytecode manipulation, execution in different Isolates would separate private state of
each invocation automatically, which guarantees the correctness of each invocation. Garbage
collection would also be performed separately for each Isolate, possibly reducing GC pause.

3.2 Overhead using GraalVM Native Image Isolate

Since using Isolate introduces additional complexity to the system, the performance of isolate
is an important factor that influences decision making for our system design. Therefore, before
we implement isolate proxy using GraalVM Native Image, we first study the overhead to use
an Isolate. Native Image Java API creates a default Isolate for standalone executable before
the main function is invoked. If we want to use another Isolate to run our code, we need to
explicitly create one.

We implement our first mini-benchmark application where we create and tear down an Isolate.
Since we want to study Isolate creation and tear-down overhead in relation to amount of memory
being allocated inside it, we pass memory size as a parameter to the working Isolate. Inside the
new Isolate, we allocate different size of Integer ArrayList, initialize ArrayList using a for-
loop and calculate hash of the ArrayList. We measure the wall-time for creation and tear-down
by setting checkpoints before and after the corresponding statements. We print the measured
timestamps out and post-process the measurements using extra Python script. The measurement
results are shown in the figures below.
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Figure 3.2: Creation Time of new Isolate in re-
lation to different amount of memory
allocated inside that Isolate

Figure 3.3: Tear Down Time of new Isolate in re-
lation to different amount of memory
allocated inside that Isolate

From the Figure 3.2, we can find that time used to create a new Isolate is relatively stable on
our server machine 1 regardless the amount of allocated memory inside it. Creating an Isolate
needs to map the Image Heap to the new VM instance. Image Heaps are shared under Copy-
on-write manner. Code section is directly referenced. On our server machine, creation of a
new Isolate costs around 0.8ms. On the other side, as depicted in Figure 3.3, the more memory
being allocated inside the Isolate, the more time has to be taken to tear it down. On our server
machine, the equivalent speed to release memory back to operating system is around 2.3 GB
per second. When we dive into the source code for tear-down inside Substrate VM, we find a
for-loop releasing all chunks have been allocated for that Isolate. This explains the proportional
relationship between tear-down time and allocated memory. Nevertheless, using tear-down
would be much faster than normal garbage collections inside Isolate, since garbage collector
needs examine which objects can be discarded.

3.3 Message Passing between Isolates

Since we want to invoke a serverless function to run inside an isolate, we need to pass corre-
sponding arguments to the entry-point method. However, the entry-point method cannot take
object reference as parameters. How can we pass Java object as arguments to the working Iso-
late? Static class CTypeConversion of Native Image Java API supplies multiple static methods
to enable data copying from one heap space to another. Object need to be serialized while being
copied between different isolates.We take String-passing as an example and use the following
code snippet inspired by [Wim] to elaborate how this works.

1 public static void run(String input){
2 IsolateThread processContext = ...; //initialize as before
3 ObjectHandle inputHandle = copyString(processContext,input);
4 stepIntoIsolate(processContext,defaultContext,inputHandle);
5 Isolates.tearDownIsolate(processContext);
6 }
7

8 @CEntryPoint

1Our server machine is equipped with AMD OpteronTM 6174 (4 sockets x 12 cores) 2.2GHz and 126GB Mem-
ory. All local experiments in this project are running on this machine.
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9 private static void stepIntoIsolate(@CEntryPoint.IsolateThreadContext
10 IsolateThread processContext,
11 ObjectHandle inputHandle){
12 String input = ObjectHandles.getGlobal().get(inputHandle);
13 ObjectHandles.getGlobal().destroy(inputHandle);
14 //do jobs with input String
15 }
16

17 private static ObjectHandle copyString(IsolateThread targetContext, String sourceString) {
18 try (CTypeConversion.CCharPointerHolder cStringHolder = CTypeConversion.toCString(sourceString)){
19 return copyString(targetContext, cStringHolder.get());
20 }
21 }
22

23 @CEntryPoint
24 private static ObjectHandle copyString(@CEntryPoint.IsolateThreadContext
25 IsolateThread processContext,
26 CCharPointer cString) {
27 String targetString = CTypeConversion.toJavaString(cString);
28 return ObjectHandles.getGlobal().create(targetString);
29 }

String copying has been done by the two versions of copyString functions. In the Java function
copyString (line 17-21), we extract C pointer of the Java String and pass it to a CCharPointer-
Holder. Inside try-block, we invoke another copyString method, where we first time enter the
working Isolate.

Inside new Isolate, we cannot dereference String pointer as in an unsafe language such as
C/C++. Instead, we have to copy an instance of the original object to the current heap space.
During String copying, Substrate VM allocates a new byte array with the same length in the
target Isolate and then copy data from the original heap space byte-by-byte. The pointer of new
String is registered into a global store, called ObjectHandles in line 28. Objects registered in-
side global ObjectHandles are referred by different VM instances. Therefore, garbage collector
would not collect those objects until they are explicitly destroyed as shown in line 17.

Figure 3.4: Overhead for String Copying across Isolates, wall-time for copyString java method measured
using different length of String. Orange line denotes measure wall time for argument passing,
while blue line shows the fitted result using linear regression.

Since byte-by-byte copying is implemented using a for-loop, time used to pass String is in
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proportional to argument size. As illustrated in Figure 3.4, speed to copy arguments from one
Isolate to another is only around 71.5 MB/s on our server machine.

In addition to String, CTypeConversion also provides helper methods for copying objects of type
Boolean and ByteBuffer. For example, if some objects of other types need to be passed into an
Isolate, they have to be converted into String or ByteBuffer at the first stage (via Serialization).
Class meta data can then be copied using CTypeConversion low-level API. Deserialization has
to be performed to retrieve the objects in the new Isolate. Serialization and deserialization add
additional overhead to arguments passing. To meet the closed-world assumption of native image
builder, serialization configurations has to be supplied to native-image during image build time
as well. We need to keep this overhead in mind, designing invocation routine carefully to avoid
copying large objects across Isolates.

3.4 Solution for Object Caching

The original design of Isolates assumes that execution inside Isolate are short-lived and there
would not be too much memory being allocated inside each Isolate. In optimal cases, there is
no garbage collection until an Isolate is torn down [Wim]. As we have shown in the previous
section, releasing memory by tearing down Isolate is more efficient than relying on garbage
collector. However, not all applications are suitable for this paradigm. For example, many ap-
plications interact with storage systems, such as a database. Establishing a database connection
is very expensive such that many client-applications are applying strategy called connections
pooling. Once established, database connections are kept alive and reused for further coming
requests. In Photons, we can use the global object store for connection caching. Database
connections can be cached per thread and kept alive after invocation finishes. Successive invo-
cations reuse the cached connection, reducing response latency.

If we use isolate proxy to implement the above application, we need to establish the database
connection inside the working Isolate. If we tear down the working Isolate after invocation
finishes, no objects produced by that Isolate will remain, unless we copy it to the default Isolate,
which seems to be very expensive as well. Without connection pooling, we have to suffer the
overhead of creating a connection for each invocation, which can be well illustrated in the
following figure.

In Figure 3.5, we break execution time into different parts of invocation in millisecond for both
proxies. The stacked bar plot shows the results of first five serial invocations after proxy starts
up, where we annotate different proxies using different hue palettes. Serverless function being
invoked here is a File Hashing application, where each invocation downloads a 2 MB file from
MinIO Server and calculates hash of file content. In the File Hashing application, we cache two
objects per thread in Photons: the database connection and the byte buffer. From the plot we
cannotice that Native Image starts up much faster than normal JVM. It takes much less time to
establish the database connections as well. However, since we tear down the Isolate, we have to
establish a new connection (denoted as DefaultClient, takes 13.32 ms) and allocate a new byte
buffer (denoted as getBuf, takes 1.44 ms) for each of invocation. Total overhead using Isolate,
including create Isolate, establish connection, allocate buffer, and tear down the Isolate even
costs longer time than that for workload processing. Without caching, isolate proxy double the
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Figure 3.5: Overhead for isolate proxy without object caching. The plot shows the execution time com-
parison between photons proxy and isolate proxy using File Hashing workload. Execution
time of the first five invocations after proxy starts has been broken into different main com-
ponents, where bottom stacked bars denote the results for isolate proxy.

response time, reducing quality of service by a lot.

To enable caching and reduce overhead for each invocation, we decide to delay the tear-down
of Isolates and keep warm Isolates in an object pool. In isolate proxy, we also use pool of
threads to deal with different concurrent invocations. From the invocations’ perspective, each
thread would correspond to an Isolate. However, instead of binding thread and Isolate one to
one, we keep a separated Isolate pool inside the default Isolate. Keeping a decoupled Isolate
Pool supplies huge flexibility for independent resource management with neglectable minor
overhead. As illustrated in Figure 3.6, after receiving an invocation, thread tries to borrow an
Isolate from Isolate Pool. If there is no Isolate available, Isolate Pool would create a new Isolate
using the Java API we introduced earlier and attach the current thread to that Isolate.

Figure 3.6: Caching per Isolate via Isolate Pool

Back to the mini-benchmark, we deal with Isolate mainly using IsolateThread. However, in this
case, we need to pool the corresponding Isolate pointer, since Isolate value is the only descriptor
supplying the full control of that VM instance and one Isolate may be used by different threads.
Besides, the Isolate is not Java object, so we need pack it into wrapper class and implement
boxing and unboxing interfaces. Once the thread has borrowed an Isolate, it attaches itself
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to it, passing arguments to entry-point methods and execute the invocation inside that Isolate.
Objects like buffer or database connection can be cached inside that Isolate e.g. using static
fields. After the execution finishes, the thread would detach from the Isolate and send back
the response. Warm Isolate would be kept alive and returned back to Isolate Pool, waiting for
further invocations.

Besides object pooling, we can perform asynchronous eviction using a daemon thread. If an
Isolate has been idle for a long time, daemon thread would attach to that idle Isolate and tear it
down, release unused memory back to the operating system. Similar to warm containers kept
by cloud providers, independent and adaptive management of Isolate Pool supplies additional
elasticity with finer granularity. Transforming from "caching per thread" to "caching per Iso-
late" reduces the overhead of creating object while keeping efficient memory management via
distributed garbage collection and adaptive eviction.

3.5 Solution for State Sharing

Another issue about isolate proxy is the difficulty to achieve state sharing, e.g. to share ma-
chine learning model among different Isolates. During implementing different workloads, we
also find that invocation to native libraries (JNI) are encountering similar problems as well. For
large static immutable objects, GraalVM Native Image allows to initialize and build the sin-
gleton of them into Image Heap during image build time. Using global key-value store called
ImageSingletons, registered objects can be directly accessed during run time. Using this tech-
nique, Native Image is able to share large immutable object among different Isolates using
Image Heap.

Since both JNI and machine learning model are invoking native codes, they are considered
as unsafe methods and can not be initialized by native image builder. Therefore, instances of
machine learning model can not be merged into Image Heap during image build time. To share
machine learning model singleton, we decide to keep a shared Isolate that can be accessed by
all worker Isolates to enable state sharing. Similar to Java Remote Method Invocation [Jav],
we treat shared Isolate as an "remote server". Shared resources are only available inside shared
Isolate. Worker Isolates send requests to the shared Isolate and get result back via argument
passing we’ve introduced in 3.3.

Figure 3.7: State Sharing via global shared Isolate

As illustrated in Figure 3.7, invocations are still processed by different worker Isolates. Invocation-
dependent private states would be automatically separated in different worker Isolates. To exe-
cute code snippets using JNI or shared state, we detour the current execution around the shared
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Isolate. We serialize the necessary arguments and attach current thread to the shared Isolate,
retrieve arguments and invoke native interfaces (or use shared state) in the shared Isolate. After
the critical part of codes being executed, we pass the result back to worker Isolate and detach
from the shared Isolate. Under proper separation, arguments being passed can be kept minimal
and the overhead is neglectable.

Only code snippets invoking JNI or shared state are supposed to be executed in the shared
Isolate. Code snippets that are executed inside shared Isolate, either Java code or native invoca-
tions, are supposed to be thread safe. And it is developer’ responsibility to avoid race condition
inside shared context, e.g., through synchronization. Shared isolate separate shared execution
code from independent executed code explicitly, easy for trouble shotting but also requiring
extra data separation and serialization. We believe that in near feature, GraalVM Native Image
would support JNI sharing globally and there would be better ways to do state sharing among
different Isolates without much overhead.

22



4

Experimental Evaluation

In this chapter, we evaluate the performance of the isolate proxy using different workloads. We
draw a comparison between the isolate proxy and the photons proxy, which runs on a normal
JVM. Four different workloads are introduced for evaluation purposes. We start by introducing
different workloads briefly, and explaining the design philosophy we mentioned in the previous
chapter. We profile the minimal memory usage of workloads under different concurrency levels,
while they are not encountering performance degradation. Then, we run experiments to eval-
uate different performance dimensions for both proxies inside isolated execution environment
(docker container).

4.1 Workloads for Machine Local Evaluation

All experiments in this chapter are running on our server machine as described in Section 3.2.
Therefore, we also denote the experiments as machine local evaluation. The four different work-
loads we study are: File Hashing, Image Classification, REST Requests, and a naive Memory
Allocator. We take the first three workloads from Photons [DBSA20]. In addition, we introduce
a new workload, memory allocator, to simulate a memory-intensive application. We introduce
those workloads and point out the adoption we make for isolate proxy. In the first step, we need
to profile memory requirement of each workload for both proxies. To make fair comparison, we
deactivate the compressed reference explicitly for Photons and use the same serial GC algorithm
for both proxies as well.

4.1.1 File Hashing

For the first workload, File Hashing, each invocation downloads a 2MB file from a local MinIO
[Min] server and calculates the hash of its content. MinIO is an object storage server, which is
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compatible to AWS S3 API [AWSa]. MinIO supplies a Java Client API to establish connections,
and uses a thread pool to improve efficiency. The thread pool used by the MinIO client keeps a
daemon thread alive, managing all the threads inside the pool. The daemon thread is attached to
the working Isolate and we cannot deactivate it using the exposed interfaces. This prevents the
adaptive eviction policy applied by our Isolate pool. We therefore implement our customized
version of MinIO connection client without using connection pool and apply it for both version
of proxies.

Besides the MinIO connection that is cached and reused, a byte buffer is also cached to store
downloaded file stream. Those two objects are cached per thread inside global object store in
Photons, and cached per Isolate using static fields in the isolate proxy.

In order to profile minimal memory usage for both version of proxies while keeping their peak
performance, we need to carefully determine memory usage limit for each workload. In the
first step, we launch proxy inside docker without memory limit and measure its peak through-
put using consecutive invocations generated by Apache HTTP server benchmarking tool (ab)
[ab] after a warm-up phase. Then, we shrink the size of memory limit until we observe per-
formance degradation. We do this measurement by adding concurrent invocations, determining
the minimal memory needed for each concurrency factor.

Figure 4.1: Fitted memory usage profiles of both proxies for file hashing workload.

For each workload, we split the memory limit into two components: base memory and memory
increment. Base memory denotes the minimal necessary memory needed by proxy under serial
invocations without scarifying the peak performance. Memory increment is the memory we
need to add for each additional concurrent invocation during scaling out. We model the final
memory limit for each workload using linear model using the following formula:

MemoryLimit(n) = BaseMemory + (n− 1)×MemoryIncrement

where n is the concurrency factor. Using linear regression, we determine the both factors as
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depicted in Figure 4.1. Based on the measurements points, which is denoted in solid line in the
plot, we first perform linear regression and take the minimal larger integer value of regression
slop as memory increment. Then we go through all data points, finding the maximal possible
intercept to calculate base memory, such that memory limits calculated by the above formula
are always greater or equals to the values we have measured. Using this lowest upper bound as
memory limit, we can reach a minimal cost regarding to memory usage while keeping minimal
contention among different concurrent invocations under collocation.

From the plot we notice that each Isolate needs nearly double the amount of memory for each
additional concurrent invocation, though it only requires 41.4% of the base memory to keep
service for serial requests. Besides the minor overhead to create a new isolate, arguments and
results are copied into each isolate, adding additional memory consumption. To compensate the
overhead of argument passing, each isolate needs slightly more memory as well. File Hashing is
a typical I/O intensive workload, imitating large-scale batch data processing using high number
of concurrent invocations [JSSS+19]. We choose 1 CPU per concurrent invocation, which does
not limit the peak performance for this workload.

4.1.2 Image Classification

Image classification represents typical machine learning workload applied in current server-
less platforms. As machine learning services are getting more and more popular in cloud usage
[IMS18] [AWSc], image classification workloads becomes one of the most basic machine learn-
ing applications in the cloud [Clac] [Clab] [Clad]. In this workload, the proxy uses Inception
model to perform image classification. Weights of the pre-trained model are downloaded from
local MinIO server and loaded into TensorFlow Graph during initialization.

After the model is initialized, each invocation requests an image downloaded from MinIO server
as model input. The proxy performs the inference by calling native TensorFlow libraries and by
returning the image category back to users. Weights of the classification model are immutable
during prediction. Classification model can therefore be shared among different invocations.

While machine learning model is shared via the global object store in Photons, we need to
carefully organize the invocation routine in isolate proxy. Although the pre-trained model is
immutable large object, calling into native libraries prevents us from initializing all of Tensor-
Flow classes during image build time. As a result, we cannot put the model into Image Heap for
sharing across Isolates. On the other hand, Java Abstract Window Toolkit (AWT) uses Buffered-
Image to store and process images, which uses JNI. Since JNI is currently not shareable across
Isolates, we therefore use the shared Isolate as described in Section 3.5 to hold Image Classifier
singleton and detour the invocation around the shared Isolate for JNI calls and model access.
Under proper separation, arguments passed between Isolates are only short Strings, without
adding noticeable overhead.

Since classification is done inside native code, the JVM does not have much control over the
memory being used inside the container. On the other hand, native code is not aware of the
memory limit of the container, therefore we keep conservative while pushing down the memory
limit, such that proxies would not be killed by container daemon. After measuring the memory
usage, we get the memory profiles as shown in Figure 4.2. From the plot we can see that
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Figure 4.2: Fitted memory usage profiles of both proxies for image classification workload.

Native Image reduces base memory from 1.4 GB to 0.93 GB by over 34%. Since memory
consumption comes primarily from native code, memory increment for both proxies are very
close, while detour across different Isolates adds some overhead.

Image classification is typical CPU-intensive workload. Underlying native library is capable to
use multi-thread to improve classification speed. We assign 3 CPUs per concurrent invocation
due to limitation of our server machine, which also makes this workload CPU-bounded.

4.1.3 REST Request

This workload is a modified version of a microservice benchmark [GZC+19]. It receives HTTP
requests from the user and performs a quick interaction with storage systems. In our case, a
String is passed and compared with the version stored inside mongoDB [Mon] database. The
comparison result is then returned to the user. The execution is very short and requires only few
resources.

MongoDB database connections are also expensive to establish and therefore cached for both
version of proxies. Similar to MinIO client, mongoDB client uses pool of threads as well. To
leverage the adaptive eviction policy supplied by Isolate pool, we need to release all resources
hold by the connection client and make sure there is no other thread still attaching to the Isolate
before tear-down.

MongoDB client can be explicitly closed, releasing all resources it holds, including all resources
and alive threads it keeps. We register a tear-down hook for the working Isolate in this workload,
explicitly closing the mongoDB client. Using tear-down hook, idle Isolates in Isolate pool can
be cleaned up and torn down, releasing allocated memory and keep proxy memory footprint as
small as possible.
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Figure 4.3: Fitted memory usage profiles of both proxies for REST reqeust workload.

We measure the memory profiles for this workloads using approach we introduced before. The
results are shown in in Figure 4.3. From the plot we can find that isolate proxy requires more
footprint increment when there is only very little memory allocated per invocation. Though base
memory of isolate proxy is only 60% of photons proxy, higher memory increment makes total
memory footprint larger for isolate proxy when there are more than 5 concurrent invocations.
Under small memory usage, memory overhead to use Isolate is amplified.

On the other hand, as this workload is executed under 1ms, constant-time overhead of isolates,
such as message passing, has a larger weight. This can only be compensated with a larger
memory limit for each isolate. For this workload, we assign 1 CPU per concurrent invocation,
which makes this workload again an I/O bounded workload.

4.1.4 Naive Memory Allocator

Since the before mentioned workloads are either I/O-bounded or CPU-bounded, we now intro-
duce a simple workload to imitate the memory-intensive serverelss functions such as big data
analytics, where large amount of memory is allocated to cache intermediate calculation results.
To discard the side-influences of internet connection latency via interacting with database sys-
tems, we simply allocate small amount of memory inside each invocation and calculate its hash.
Each invocation allocates an 10 MB byte array and register it into a HashMap. By removing it
from the HashMap after calculation, the byte array is discarded and handled by runtime garbage
collector.

Although we only allocate 10 MB memory per invocation, accumulated memory burden is
very high under a batch invocation pattern using Apache ab. The base memory and memory
increment for both version of proxies are denoted in Figure 4.4. From the plot we can see the
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Figure 4.4: Fitted memory usage profiles of both proxies for memory allocator workload.

huge gap of memory increment between Photons and Isolate. While photons proxy requires 195
MB more memory to collocate a new concurrent invocation, isolate proxy can keep its service
quality with just additional 21 MB. We notice that in the serial case, Photons can keep memory
management efficiency just as for other workloads. However, once there are multiple concurrent
invocations, accumulated non-reachable objects on the common garbage heap increases the
difficulty for garbage collector significantly. In contrast, isolate proxy performs independent
garbage collection. Only a relatively small heap to be analyzed by each independent garbage
collector, which makes GC procedure more efficient.

Note here the memory increment of Photons is even larger than its base memory, which seems
not worthy to still allow collocation. This is because we are using nothing but a hash function
to do the calculation inside this workload. In reality, many more components and libraries are
added into base memory, where collocation would save memory footprint and reduce cold start.
The burden for JVM to collocate large memory is comparable to memory increment we showed
here.

4.1.5 Workloads Resource Usage Profile

We summarize the resource usage profiles for the four workloads in Table 4.1. From the table
we first notice that the base memory of isolate proxy is lower than that of photons proxy. For
Image Classification, REST Request and Memory Allocator, the isolate proxy only requires
under 65% base memory of Photons. For File Hashing, the isolate proxy reduces memory
footprint down to 42%.

On the other hand, we can also see that using Isolate requires more memory increments for
some workloads. This becomes more severe especially when there is only a small amount

28



4.2 Cold start and Ramp-up Procedure

of memory allocated in each invocation. Regarding the larger memory increment of isolate

Base Memory (MB) Memory Increment (MB)

Workloads Photons Isolate Photons Isolate CPU

File Hashing 128 53 6 12 1

Image Classification 1448 948 311 313 3

REST Request 110 66 3 15 1

Memory Allocator 119 76 195 21 1

Table 4.1: Memory and CPU Usage Profiles for different Workloads.

proxy, there are mainly two reasons. First, there is minor memory overhead to use Isolate,
which is normally around 1 MB. Besides that, different Isolates split the entire heap space
into different small cells. For each Isolate, we need to keep some amount of heap space for
independent garbage collection. Proper size of Isolate garbage heap allows objects generated
by each invocation to be accumulated for some extend and discarded together. Narrow heap
space per Isolate increases the garbage collection frequency and can even makes each garbage
collection longer. In contrast, Photons allocate all objects on the same garbage heap compactly
without much spacing. The separation of whole heap space into exclude Isolates causes the heap
space fragmentation, adding memory increment during collocation in exchange for execution
security and efficient independent memory management.

In order to reduce the minimal size of heap we have to keep for each Isolate, a better paradigm
for Isolate management should not rely on Isolate garbage collector, for example tearing down
the Isolate after the work is done. However, even if object caching can be solved among differ-
ent Isolates, overhead for creation and tear-down would still add up response time latency for
invocations that are finished under 1ms like REST Request.

4.2 Cold start and Ramp-up Procedure

One benefit to use Native Image is its fast start up. Not only the time we need to wait until the
service available, but also the time to spend before it can achieve peak performance, which is
denoted as runtime ramp-up process.

In serverless platform like OpenWhisk, a new docker container is initiated when there is no
available warm container for the invocation. This situation is called cold start. We measure this
cold start time for both version of proxies. To measure this time, we set check points after proxy
already starts and measure the wall time before starting the docker container till proxy has been
started. As listed in Table 4.2, starting isolate proxy costs, on avereage, 576 ms less compared
to photons proxy. Running machine code of AOT executable also reduces the variance of cold
startup time by 16.6%.

Besides the faster cold start up, Native Image can achieve its peak performance much faster
than Photons as well. We measure this procedure for different workloads. After we start up
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Time until Service Available (s)

Proxy mean standard error

Photons docker 1.749 0.0368

Isolate docker 1.173 0.0307

Table 4.2: Docker Cold Start Up Time for both version of proxies. Wall-time is measured here from
starting docker container to HTTP proxy bas been started.

the proxy inside docker with corresponding CPU and Memory profiles listed in Table 4.1, we
use Apache ab to send continuous invocations to the proxy for 150 seconds. We aggregate
the average response time per second and calculate the corresponding equivalent throughput.
We take typical ramp-up procedure of file hashing workload as an example. The equivalent
throughput for the first 140 seconds under concurrency level 8 is shown in Figure 4.5.

Figure 4.5: Equivalent Throughput along warm-up procedure for file hashing workload under concurrent
level 8. Throughput is calculated by mean response time per second without being multiplied
with concurrency factor.

As a full picture of what has been shown in Figure 3.5, we can clearly see the speed up slope
for photons proxy. Isolate proxy not only reduces the first invocation of file hashing from 1.5s
down to 33ms. It can also already reach its peak performance since the second invocation of
each Isolate, i.e., after the MinIO connection and byte buffer are cached inside it. After very
short time, isolate proxy reaches and keeps its peak throughput at around 64 responses per
second per concurrent invocation.

On the other hand, Photons suffer from heavy class loading and inefficient bytecode interpre-
tation at the start of its service. As the JIT compiler transforms bytecode into more efficient
version, throughput of photons proxy catches up isolate proxy after 12 seconds. In this work-
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load, profiles collected during run time makes JIT compiled code more efficient than AOT
compiled executable and reaches its peak performance after around 30 seconds. After over 54
seconds, Photons finally catch up the total numbers of responses, while there are already more
than 85,000 invocations being processed.

For less frequently invoked functions, the proxy can rarely be warmed up with so many invoca-
tions until they are stopped by eviction policy. Once the warm container is shut down, JVM has
to experience the whole process of slow ramp-up again for next cold start. In contrast, Native
Image can reduce number of slow invocations by a lot. Ideally, only the first invocation of each
Isolate is executed slowly due to possible run time initialization. All successive invocations to
isolate proxy can already be executed with its peak performance. If containers need to be fre-
quently restarted, which is prevalent in serverless context, Native Image can increase the service
quality, reducing response time latency by a lot.

For other workloads, isolate proxy also reduces the ramp-up time significantly. For image clas-
sification, model weights are downloaded and loaded during first invocation. Isolate speeds up
this procedure from 3s down to 1.5s. The first invocation for REST request, including mon-
goDB connection client establishment, is executed by isolate proxy 100x faster than photons
proxy, i.e., from over 900ms to 9ms.

4.3 Invocation Response Time Latency

Besides tail latency caused by cold starts, we study the response time latency for a warmed-up
runtime in this section. Response time latency has always been used to evaluate quality of ser-
vice and is part of service-level agreement of many serverless computing providers. Besides
I/O access and internet connection, complex runtime systems like the JVM may introduce addi-
tional latency as well. Both JIT compilation and garbage collection consume computation and
memory resources, which may interfere the execution of invocation.

We measure response time latency for different workloads on fully warmed-up containers with
proper resource configurations as shown in Table 4.1. Before measurement, we use concurrent
invocations to warm up each container for 150s. After that, we measure response time using
Apache ab. The first plot in Figure 4.6 illustrates the percentage of the requests served within a
certain time for file hashing workload, where horizontal axis shows the percentage and vertical
axis denotes the corresponding percentile in milliseconds.

In order to discard the latency caused by MinIO server as much as possible, we measured the
response time for multiple times and discard the outliers. Average values of measurements are
annotated by dashed lines for photons or solid lines for isolate proxy. Variances of measure-
ments are illustrated by the shadow area around those lines. Note that we use uneven scales for
horizontal axis and start from 50 to show the inflation of tail-latency more clearly.

From the plot in Figure 4.6 we can see that response time of Photons are shorter than that of
isolate proxy for more than 99% of all invocations for each concurrency level separately. JIT
compiled code leverages run time profiles and therefore beats the AOT compiled native im-
age. Since the workload is I/O-bounded, photons proxy also has comparable worst-case latency
except for serial invocations. The spike for photons under serial invocations is causes by JIT
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Figure 4.6: Response time latency percentiles for file hashing workload under different concurrency
levels. Dashed lines are for photons proxy while solid lines are for isolate proxy. Different
concurrency levels are shown in different colors.

compilation in the background. After 150s serial invocations, JIT compilation can still inter-
fere the invocation execution. For higher concurrency levels, JVM are fed by more invocations
in 150s. Additional CPU resources are used for JIT compilation during warm-up. Therefore,
photons proxy does not experience high tail latency for concurrency level 2 and 8.

Figure 4.7: Response time latency percentiles for image classification workload under different concur-
rency levels. Dashed lines are for photons proxy while solid lines are for isolate proxy.
Different concurrency levels are shown in different colors.

The second plot in Figure 4.7 shows the response time latency for image classification work-
load. As a CPU-intensive workload, main part of prediction is executed via TensorFlow native
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code. JIT compilation therefore does not have huge impact on execution efficiency. In con-
trast, native image has slightly more efficiency to interact with native library. Therefore, isolate
proxy has better latency performance. Since the configuration for this workload makes it CPU-
bounded. Underlying native library tries to use as much CPU as they could. Contention for
computational resources leads to unevenness of response time distribution. As concurrency fac-
tor increases, native library becomes the bottleneck as well. As shown in the plot, both proxies
are experiencing performance degradation under higher concurrency levels.

Figure 4.8: Response time latency percentiles for memory allocator workload under different concur-
rency levels. Dashed lines are for photons proxy while solid lines are for isolate proxy.
Different concurrency levels are shown in different colors.

The last plot in Figure 4.8 shows the response time latency percentiles for memory allocator
workload, where each invocation allocates 10 MB objects. From the plot we notice that best
performance of JIT-ed code is always slightly better than AOT compiles native image. For
example, under serial invocations, photons proxy has lower response speed for 99% of all invo-
cations. However, for multiple concurrent invocations, independent garbage collection shows
its efficiency. For concurrency level 2, photons proxy suffers large tail latency with longest
request of 16.33ms, whereas isolate proxy can finish all requests in 7.67ms.

As the concurrency factor further increases, huge amounts of memory are allocated in short
time. While both proxies are experiencing performance degradation, tail latency for photons
proxy are more than double the worst case of isolate proxy. Photons proxy deals with its slowest
1% of invocations using almost 10 times of its peak performance.

One important thing to note is that, under concurrency level of 8, photons proxy consumes 1484
MB memory while there are only 223 MB memory available for isolate proxy. Distributed
garbage collection substantially increases efficiency of memory management, potentially im-
proving service quality under collocation of concurrent invocations.

Results of response latency test show that isolate proxy has more efficiency to invoke native
code. Absence of JIT compiler minimizes runtime interference for executed invocation. Dis-
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tributed garbage collection of isolate proxy is especially fit for memory-intensive workloads,
reducing tail latency by 50% in our example workload.

4.4 Peak Throughput after full Warm-up

As indicated by the results of runtime ramp-up for file hashing workload in Figure 3.5, we no-
tice that the JIT compiler of normal JVM may achieve better optimizations than Native Image.
Without execution profiles during run time, the AOT compiler can hardly produce as efficient
code as JIT compiler. We measure the peak throughput after full warm-up for different work-
loads to show this potential performance gap.

Figure 4.9: Peak throughput of isolate divided by peak throughput of photons under different concur-
rency levels for different workloads. Different workloads are denoted in different colors,
where mem refers to memory allocator workload and login refers to REST Request work-
load.

In Figure 4.9, we plot the peak throughput comparison between two proxies. Numbers shown
in the plot are calculated as peak throughput of isolate divided by peak throughput of photons
proxy. We perform measurements for several times. Average performance factors are denoted
as numbers over each bar, while variances of measurements are represented by the length of
segments on the top of each bar. We show the throughput comparison for different workloads
under different concurrency levels.

For I/O intended workloads, i.e., REST Request and File Hashing, the AOT compiler cannot
produce as efficient code as JIT compiler. As depicted in the plot, isolate proxy experiences
up to 7% degradation for file hashing, while runs up to 12% slower for REST request (denoted
as login). Execution time of REST Request workload is around 1vms and only allocates few
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memory. Using isolated heap spaces add too much overhead for such a tiny workload comparing
to threads in photons, although it supplies more safety and security for each execution. For the
image classification workload, native image performs more efficient interaction with native code
than normal JVMs and therefore surpasses the peak throughput of photons proxy from 4% to
17%.

For memory allocator workload, JIT compilation of photons makes its execution slightly more
efficient than isolate under serial invocation, where photons proxy runs 2% faster. When there
is more than one invocation collocated in the same runtime, huge burden of garbage collection
outweigh the efficiency of JIT compilation. Performance of both proxies for this workload are
very close, while isolate proxy has lower tail latency and much less memory footprint.

From all above performance aspects, both isolate and photons proxy show their strengths and
weaknesses. We discuss this design trade-off in summary in the next section.

4.5 Local Evaluation Summary

After evaluating different performance aspects of both proxies, we can conclude the advantages
and disadvantages using isolate proxy.

• For computation-intensive workloads, normal JVM could be more efficient. In such work-
loads, Java bytecode are likely to be better compiled by JIT compiler using run time pro-
files. If such workload experiences high invocation frequency, i.e., runtime has enough
time and enough number of invocations to be warmed up, a fully warmed-up photons
proxy should be a better choice. Especially for tiny workloads with minor memory and
time consumption, additional overhead introduced by isolate takes more weight. As the
results shown in Section 4.4, isolate proxy may experience up to 18% peak throughput
degradation.

• Isolate proxy has much less base memory footprint. As shown in Table 4.1, isolate proxy
reduces runtime base memory from 35% up to 59%, while may require higher memory
increment to keep compensate performance degradation. In the serverless cluster, if the
overall memory footprint of isolate proxy can be smaller than photons proxy, it is possible
to allocate more instances under restricted resources or just keep more containers warm
to avoid cold starts.

• Isolate proxy has much faster start up and ramp-up process. Measurements show that
isolate proxy reduce the cold start time by 576ms, 32.9% of the total cold start time of
photons proxy. Isolate proxy also significantly improve the ramp-up procedure of the
runtime. In file hashing workload, photons proxy can only catch up the total number of
invocations isolate proxy after 54s of continuous non-stopping invocations, when over
85,000 of invocations have been processed. On the other hand, isolate proxy reduces the
first invocation response time from 2x to 100x shorter. Under serverless context, where
containers need to be frequently instantiated and shut down, isolate proxy can provide
faster scale-out and smaller tail-latency.

• Distributed garbage collection is more efficient for memory-intensive workloads. For
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memory-intensive workloads such as big data analysis, a distributed version of garbage
collection can provide better latency with much less memory increment. As the results
of Memory Allocator workload shows, isolate proxy reduces the worst-case latency by
50%, while only requiring 10% memory increment comparing to photons to achieve the
same performance.

Combining all the factors above, we want to explore the possible benefits using Native Im-
age under realistic serverless context. Without need to integrate Native Image into large-scale
production environment, event-driven simulation is a useful tool to reveal insights of the real
system state. We therefore run cluster-wide simulation to study the design trade-off for inte-
grating isolate proxy into serverless platform.
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Cluster-wide Event-driven Simulation

From the results of machine local evaluation, we know the strengths and weaknesses of GraalVM
Native Image Isolate. Cluster-wide system state highly depends on nature of serverless invo-
cations, i.e., distribution of invocation duration, memory footprint, arrival rate etc. Therefore,
we use cluster-wide event-driven simulation with realistic production traces to explore the im-
pact of integrating Isolate proxy. In this chapter, we first introduce how we generate simulation
traces and scheduler logic of our simulator. We then interpret the simulation results, showing
the trade-off of using Native Image in serverless platform.

5.1 Simulation Trace Generation

Since we are not able to build a realistic large-scale serverless platform integrated with Native
Image, we use en vent-driven simulation to study the possible system state. The event-driven
simulator takes a stream of events and dynamically schedules them based on the system state.
Using realistic events traces can reveal realistic system behavior to a great extent. Researchers
usually model coming events for such systems using Poisson distribution for independent ar-
rivals or Markov distribution for dependent events [DBSA20]. In 2019, Microsoft Research
study the function invocation statistics on their Azure platform [SFIG+20], showing the invo-
cation statistics from cloud provider’s perspective for the first time. Their study reveals that the
duration, memory footprint and invocation frequency of different functions diverse greatly. For
example, small parts of functions contribute to most of overall invocations and those invocations
are arriving concurrently with high probability. This nature of invocation pattern indicates the
efficiency of runtime sharing via collocation using Photons [DBSA20]. On the other hand, vast
number of functions are invoked very infrequently. Keeping warm containers for them is ex-
pensive and even wasteful. In other word, containers for most of the functions are infrequently
used and need to be frequently restarted, where fast cold start and ramp-up features of Native
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Image can be very beneficial.

Besides the characteristics shown in the paper [SFIG+20], Microsoft Research also released
a subset of the production traces they collected for public access [Azu]. Published data set
consists of three parts: function duration distributions, function memory footprint distributions
and function invocation counts. All identifiers of users, applications and functions are hashed
using HMAC-SHA256 to protect users’ privacy. Since the functions running on Azure are not
available to us, we are not able to measure the real performance using Photons or Isolate proxy,
such as startup speedup, memory footprint reduction and peek performance degradation etc. We
therefore decide to combine the function invocation counts together with measurements from
the four workloads in the last chapter to generate event traces for our simulation. To simplify
the simulation, we assume CPU resources are not limited and take the execution time of each
workload under default CPU setting from Table 4.1 for granted. We only consider memory
footprint as the single limited resources among the cluster and invocation execution time helps
scheduler to decide when and how much memory are occupied.

Within Azure traces, different applications are identified by their owners. Each application
consists of different functions. While application is the basic schedule unit in Azure platform,
we take function of same user as independent schedule unit in our case and do not consider their
trigger types. Besides that, we map different function id from the production traces randomly
to one of our four workloads. Therefore, all functions are sharing four different performance
profiles, while they are treated and scheduled as different functions.

We take the memory footprint, execution time, cold starts and ramp-up procedure into account
for each generated event. As the statistics of function invocation counts are aggregated per
minute, we first assign timestamp for each invocation. We simply treat all invocations inside
one aggregated minute as independent events and use uniform distribution to draw a random
start time for each invocation in that minute. After that, we map corresponding function id
randomly to one of our workloads, take the base memory and memory increment from Table
4.1. The exact memory footprint is dynamically calculated based on the collocation status
during simulation time. One sample event generated using above approaches is illustrated as
follows.

function_id abs. start_time (s) total_memory private_state startup_time (s)

538e5f...9191 50640.00007525826 132 6 1.780716656

Table 5.1: Example of generated simulation event.

In the Table 5.1, function_id is the unique function id used for scheduling, start_time denotes the
absolute timestamp in seconds when the event arrives. total_memory and private_state are base
memory and memory increment in MB. start_time is the docker cold start up time generated
using Normal distribution based on the measured parameter in Table 4.2. Cold start time is
added to total execution time during simulation, if a new container needs to be instantiated for
that invocation.

Since we are considering ramp-up procedure of each workload, we cannot determine the exact
execution time before we run the simulation. Therefore, execution time of each invocation is
generated dynamically based on how the container warmed up during the simulation on the fly.
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Figure 5.1: Invocation Counts per minute for the first data from Azure Traces [SFIG+20], counts for
each mapped function are also illustrated. Mapped Function Id denote four different work-
loads we have, 0 for file hashing, 1 for REST Request, 2 for Memory Allocator and 3 for
Image Classification.

In Figure 5.1, we show the number of invocations per minute for the first 24 hours, i.e. 1440
minutes from the production traces, together with the invocation numbers for each mapped
function. From the invocation counts, it is clear that high number of invocations follows an
hourly invocation pattern. Other than that, there is no significant invocation pattern for any time
interval. Since the simulation for different cluster sizes is time-consuming, we therefore only
choose the busiest 10 minutes in the first day for simulation, which requires the most resources
for that day. We study three cases in the simulation: regular proxy without collocation, Photons
proxy and Isolate proxy. We generate two versions of traces, where regular and photons proxy
use measurements for photons proxy and Isolate proxy takes its specific memory footprint and
execution time profiles.

5.2 Simulator Logic

Our simulator is adopted from the simulator used in [DBSA20]. It performs the resource man-
agement for incoming functions, which is the memory management of each machine in the
cluster. Many serverless platforms use fixed time "keep-alive" policies for warm containers to
reduce cold starts. After each invocation finishes, warm containers are kept alive for another
10-20 minutes [Keea] [Keeb], waiting for possible consecutive invocations. If containers are
idle longer than the fixed time-threshold, they are shut down and release the allocated memory
back to the cluster.
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While there are more advanced adaptive policies like the adaptive scheduler using time-serial
prediction described in [SFIG+20], we choose an infinite time "keep-alive" policy in our sim-
ulator. In other words, we do not set any fixed time-threshold and keep warm containers as
much as we could. However, since we do not have infinite memory resources, eviction of warm
containers is unavoidable. We only evict containers when we do not have enough memory to
allocate new invocations. This lazy eviction policy represents the best possible case for fixed-
time "keep-alive" policy under restricted resources. Other more advanced scheduling policy can
always benefit from the faster ramp-up procedure supplied by Native Image as well.

After simulation traces are generated, the simulator takes the stream of events and schedule
those incoming invocations into proper containers. The core component of the simulator is a
priority queue sorted by timestamp of events. All arrived events are firstly pushed into this
queue. During scheduling, scheduler polls the first event from the priority queue and try to find
a proper container to execute it. To find a proper container, the scheduler needs to consider the
following situations.

• Collocation is allowed and there is a busy container executing the same function. Sched-
uler tends to collocate concurrent invocation to the active containers in order to save
memory usage. To collocate an concurrent invocation, scheduler needs to expand the
container memory limit by memory increment required by the function. In this case,
scheduler examines all machines holding such an active container and checks their avail-
able memory. If there is any machine having enough memory for the required memory
increment, scheduler collocates that invocation directly.

• Collocation is allowed but not directly possible due to memory shortage. As we men-
tioned before, scheduler follows the lazy keep-alive policy. After some time of warm-up,
machines among the cluster are keeping as many warm containers as they could. When
the scheduler tends to collocate an invocation but the available memory on that machine
is not enough, it tries to evict possible warm containers in exchange for needed mem-
ory. During eviction, all warm containers are sorted by the invocation frequency of the
function they hold. Containers that are less likely invoked are shut down until there are
enough memory for the collocation on that machine.

• Idle warm container is available in the cluster. If collocation is not allowed or the sched-
uler cannot get enough memory for the collocation, even via eviction, scheduler tries to
find any warm containers for the function among the cluster.

• No proper container exists for the incoming function. If there is no warm idle container
in the cluster, scheduler has to instantiate a new container for the invocation somewhere
in the cluster. If this succeeds, cold start time is added to execution time.

• No place available to allocate the invocation. The worst case for the scheduler is that
there is no memory resource among the cluster to execute this invocation. At this time,
memory becomes the bottleneck of serverless platform. Scheduler can only push the
current invocation in another waiting queue and schedule them with highest priority when
there is available resource.

Once an invocation can be successfully scheduled, the execution time of it is generated as
well. Since we are considering ramp-up procedure of each workload, the execution time of
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each invocation depends on the age of container where it is executed. We define the age of
warm container as the number of invocations have been executed in it. We only update the
age of containers after invocation finishes. For example, all the concurrent invocations are
experiencing cold start and treated as the first invocation as long as the first invocation for that
container has not been finished.

The ramp-up procedure is divided into two phases. For the first one thousand invocations we
generate the execution time based on container age. After age one thousand, we treat containers
as fully warmed up. The total execution time of an invocation is then the sum of potential cold
start time and the generated execution time.

After the event is successfully scheduled, we push the event of invocation finish into the same
priority queue. When scheduler polls a finish-event, it updates state of machines correspond-
ingly. We dump the active memory usage every simulated second and collect the invocation
statistics. Since we are using lazy "keep-alive" eviction policy, warm containers are filling
memory of each machine, we distinguish the memory usage from active memory usage, which
only counts the total memory of active containers, where there are invocations being executed
inside.

5.3 Simulation Result

Using the aforementioned simulator and generated trances, we run several simulations under
different cluster size. We set up the cluster with one hundred machines and adjust the cluster
size by setting available memory for each machine. At first, we analyse active memory usage
dumped throughout the simulation. Then we count the total number of cold starts during the 10
minutes simulation time, studying the trade-off between total number of cold starts and cluster
sizes. There are large amounts of concurrent invocations in the production trace. Runtime
sharing improves overall performance of isolate and photons proxy over regular by more than 2
magnitudes. Therefore, we only make comparisons between photons and isolate proxy.

5.3.1 Memory Consumption

As listed in Table 4.1, isolate proxy has a lower base memory for all the workloads. However,
for file hashing and REST request, isolate proxy requires a higher memory increment, which
can lead to larger memory footprint than photons proxy under high concurrency level. We
first show the cluster-wide active memory usage of each proxies under different cluster sizes.
In Figure 5.2, we plot the total active memory usage throughout the cluster for both proxies
under different cluster sizes. Simulation results under different cluster sizes are distinguished
by different colors.

For this simulation, we have to setup an initial empty state for our simulator. As a result, at
the very beginning of the simulation, high number of cold starts become system bottleneck and
number measured at this time do not reflect the real performance of the cluster. We discard
the cluster warm-up process and cool down process from the total 10 min simulation. The
simulation process showed in the following figure is therefore shorter than 10 min.
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Figure 5.2: Cluster-wide total active memory usage in TB. Dashed lines denote photons proxy, while
solid lines denote isolate proxy. Simulations under different cluster size are distinguished by
different colors. Simulation starts from absolute

From the plot we notice that all solid lines are lower than dashed lines, which means total
memory of running containers for isolate proxy are always lower. Base memory of active
containers for each function dominates the active memory usage, which makes isolate proxy
has overall lower memory footprint.

On the other hand, as cluster size gets larger, active memory usage goes down for both proxies.
When there is less memory on the machine, many concurrent invocations cannot be collocated
to active container due to memory limitation on that machine. New containers need to be
instantiated on another machine, adding additional memory usage. As the available memory
for each machine goes up, concurrent invocations can be collocated to fewer active runtimes,
reducing overall active memory footprint as shown in the plot.

5.3.2 Cold Starts

During each simulation, we also count the total number of cold starts. We show these numbers
in Figure 5.3. In this figure, number of cold starts are plotted as a function of cluster size.
From the plot we notice that the more memory we give to the cluster, the less cold starts we are
experiencing, until all warm containers can be kept alive for a while inside the cluster due to the
infinite-time "keep-alive" eviction policy.

Comparing the knee points of both curves we can find that using isolate proxy reduces the mem-
ory requirement by around 30%. Cluster with 4 TB memory using isolate proxy is encountering
the same number of cold starts as a 6.4 TB cluster equipped with photons proxy. This memory
efficiency can reduce large amount of costs for cloud providers. The saved memory can also
be leveraged to keep more warm containers to reduce cold starts. By suffering same number
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Figure 5.3: Total number of cold starts during simulations under different cluster sizes. Note that for
better visibility, x and y axis are not starting from 0.

of cold starts, fast start up of isolate proxy container can still save over 500ms per cold start as
shown in Table 4.2, which has huge impact for the performance of short-lived invocations.

5.3.3 Response Time Latency

To study the quality of service using the isolate proxy, we analyze the execution time for sim-
ulated invocations. Since all of the simulated functions are sharing profiles from four different
workloads, we therefore aggregate results for all invocations that are mapped to the same work-
load. We use the median response time to indicate the quality of service. The metrics are firstly
calculated for each simulated function. To aggregate results into the four mapped workloads, we
take weighted average of the median response time, where invocation counts of each function
are selected as weight.

Figure 5.4 shows the median response time of functions with profiles of different workloads.
The top plot is for functions mapped to file hashing workload. From that plot we can see isolate
proxy achieves better performance in general. We can also notice that there are invocation
bursts at around 50700s, which causes large number of cold starts. Cold starts of photons
proxy significantly degrade the median response time, while isolate proxy keeps invocation
time stably small. As the cluster size goes up, spike for photons proxy goes down. On the
one hand, more memory allow more warm container to reside in memory. On the other hand,
it allows concurrent invocations to be more likely allocated on same machine. Both of these
reduce the number of cold starts. For photons proxy, cold start takes nearly 1.7s based on our
measurement listed in Table 4.2, which is very heavy overhead for file hashing workload with
peak performance of 15ms.

As we have showed in Figure 5.2, isolate proxy has lower overall active memory usage, which
allows warm start and collocation. In addition to that, native image takes around 500ms less for
every cold start. Although the cold start time is still too high comparing to workload execution
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Figure 5.4: Weighted average of aggregated median response time of all functions that are mapped to
different workloads. Median response time is calculated separately for each function and
averaged using their invocation counts as weight. login denotes the REST Request and mem
denotes the Memory Allocator.
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time, faster start up by 500ms is difficult to be caught up by JIT optimization of photons proxy.

For functions taking profiles of REST Request workload, short execution time makes them
extremely sensitive to cold starts. As illustrated in the third plot in Figure 5.4, performance of
these functions has been improved by a lot as cluster size goes up.

The third plot in Figure 5.4 shows the median response time for functions that are using Memory
Allocator workload profiles. As shown in Section 4.4, peak performance of both proxies for this
workload is close to each other, while isolate proxy requests much less memory increment for
collocating concurrent functions and better tail-latency.

As shown in Figure 5.1, functions mapped to Memory Allocator workloads have the largest
invocation frequency comparing to other profiles. Large invocation frequency increases the
survival rate of warm containers for these functions among the cluster due to eviction policy
of our simulator. Large number of invocations also warm up the container as soon as possible,
making peak performance of photons proxy close to isolate proxy, as shown in the third plot in
Figure 5.4.

For simulated functions mapped to image classification workload, we can see their median
response time in the last plot in Figure 5.4. Unlike previous workloads, image-classification
takes over 600ms to be executed and therefore less sensitive to cold start time. Larger base
memory of photons proxy creates higher spike during invocation bursts at around 50700s.

Figure 5.5: Simulation average median response time for functions using profiles of different workloads
under different cluster sizes. login denotes the REST Request and mem denotes the Memory
Allocator.

We calculate the mean of median response time over whole simulations and plot the average
median response time as a function of cluster size for different workloads’ profiles in Figure
5.5. As depicted in Figure 5.5, isolate proxy shows strictly better median response time than
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photons, even with much smaller cluster size. From the plots we can also find that workloads
with short execution time are more likely influenced by the additional number of cold starts for
photons proxy, while workloads like image classification are less influenced.

For example, as we analyzed in Section 4.4, isolate introduces additional overhead to execute
REST Request workload. Isolate proxy takes 10% longer time for each 1 ms invocation, which
is around 0.1 ms. However, as shown in the simulation result, cold starts time dominates the
latency of such short-lived workload. Reduction of 500 ms start up time of isolate proxy has
to be amortized by more than 5000 invocations on fully warmed-up photons proxy. Similar to
the ramp-up effect for file hashing work depicted in 4.5 back in Section 4.2, faster start up and
ramp-up procedure of isolate proxy help to reduce the overall latency.

5.4 Cluster-wide Simulation Summary

From the simulation results we can see that using isolate proxy reduces the overall memory
usage for the cluster by 30%. Under same restricted cluster size, isolate proxy experiences less
cold starts and can always supply better quality of service. Lower memory footprint brings
efficiency mainly in two ways. Allow more warm containers to reside in memory and allow
more invocations to be collocated per runtime. Both of them reduce the number of cold starts.

Comparison of median response time between both proxies shows that runtime cold starts have
huge impact on short-lived invocations. Less cold starts also help isolate proxy to deal with
invocation bursts more smoothly, adding elasticity to serverless platform. To achieve same
quality of services, isolate proxy requires 30% less memory resource, which can reduce much
costs for cloud provider.

Our simulation results show that the nature of serverless functions invocation pattern conforms
to the strengths of native iamge isolate proxy. It is worthy to use isolate proxy to trade faster
start up and lower memory footprint for peak throughput in a serverless context. With less
memory usage, the overall performance of the whole platform can be significantly improved.
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Related Works

"Those who cannot remember the past are condemned to repeat it". Same problems are studied
for many times as the technology develops. In the following, we discuss several works related
to from virtualization technologies via runtime-level isolation to cloud simulation, comparing
them with our work.

Virtualization technology like gvisior [gVi], firecracker [ABI+20] and kata container [Kat] sup-
ply light-weight virtualization while keeping security by allocating each invocations in different
instances. Using these technologies have reduced the docker start time by a lot. However this
does not reduce the start up time of the application language runtime such as JVM. From our
experiments, native image proxy finishes start up in 20ms while normal JVM takes over 200ms.
As the VM start up time decreases, the slow start of a JVM is amplified and becomes the
optimization bottleneck. On the other hand, without runtime sharing, concurrent invocations
are encountering more cold starts, leading to overall performance degradation. Duplicates of
language runtime, libraries and shareable program states add additional memory usage to the
serverless system, increasing costs for both cloud users and providers.

As an improvement to the existing invocation execution environment, SAND [ACR+18] allo-
cates lambdas of the same function inside a common sandbox, leveraging a hierarchical message
bus to enable communication between lambdas of same function, and among different applica-
tions. SAND uses process forking to deal with same invocations inside same sandbox, which
is fast and memory efficient. However, as pointed out by Dukic et al. [DBSA20], forkink a
fully fledged JVM modifies more memory than sharing invocations in same runtime. From our
experiments, Copy-on-write of native image isolate does not pollute more memory than normal
thread (under 1 MB), additional overhead for memory increment comes mainly from garbage
heap hold by each Isolate, which is typically a performance trade-off. Communication across
different processes is much heavier than message passing among different isolates as well.

Disjoint heap spaces have shown its efficiency in modern browsers for large amount of concur-
rent client-side sessions. Wagner et al. [WGW+11] proposed abstraction for disjoint JavaScript
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heaps calles compartment. Objects are separated by their document origin in different heaps.
Garbage collecting is executed for each individual compartment, increasing browser response
time by a lot. Native image also keep disjoint Java heaps for different isolates, supplying se-
cure isolation and efficient distributed garbage collection. Our tail latency measurement for
memory-intensive workload shows that isolates reduce worst-case tail latency by 50%, which
conforms to the observations from Wagner et al.

Sharing execution environment for different invocations via runtime-level isolation has also
been explored before. For example CloudFlare Workers [Clo] leverage Isolate in JavaScript V8
engine [V8J] to allow different functions to be executed on the common JavaScript runtime.
However, code is not shared among different Isolates in V8, while isolates in native image
directly reference the shared part of code. In addition, CouldFlare restricts applications to
be purely JavaScript while native image supports multiple dynamic languages like Python, R,
JavaScript etc. Finally, Native Image has much faster start up time than V8 JavaScript VM
[WSH+19].

There are some simulators to do simulations for cloud computing systems, such as CoudSim
[The] and its extension ContainerCloudSim [PDCB17]. Those simulators are are also designed
for studying systems states under different conditions. For example, ContainerCloudSim studies
the system performance under different container scheduling and provisioning policies. How-
ever, such simulators are highly complicated and include many services we do not need, for
example container deployment and destroy. Besides, we want to study the performance of each
invocation depending on container state, e.g., the ramp-up process is related to container age we
defined in Chapter 5. Modifying such a system to support our use case is too much overhead.
We therefore developed our own simulator extended by the simulator from [DBSA20].
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In this project, we design and implement a serverless proxy runtime using GraalVM Native
Image Isolate, leveraging runtime sharing for collocating same invocations from same user
inside the same runtime proposed by Photons [DBSA20]. We let each invocation be executed
in different isolates, which has independent isolated heap space. Isolate separates private states
of each invocation automatically, ensuring the correctness of their executions. Using Native
Image, isolate proxy achieves fast start up and lower memory footprint. Independent heaps
allow garbage collection to be performed in a distributed manner, adding memory management
efficiency for memory-intensive workloads. On the other hand, separated heap space limits the
object sharing among different isolates. We propose our solutions of isolate pooling and shared
isolate to enable object caching and state sharing.

We use different workloads to perform machine local evaluation. Isolate proxy reduces runtime
base memory for serial invocations by up to 65%, while only need 10% memory increment for
additional collocated memory-intensive invocation. Container equipped with isolate proxy also
has shorter start up time. It costs over 500ms less to wait for service in container available. On
the other hand, isolate proxy trades fast start up and lower memory footprint for peak through-
put. JIT compiler of fully-fledged JVMs have 5% to 7% better performance for I/O intensive
workloads, while for invocations with extremely short execution time and memory consump-
tion, such as REST Request in Figure 4.9, JIT compiler can increase this performance gap up
to 12%. Native Image has lower overhead to interact with native libraries, and can reduce the
longest tail-latency of memory-intensive workloads by over 50%.

In the last part of this project, we use cluster-wide event-driven simulation with realistic server-
less invocations pattern to study the efficiency to integrate isolate proxy. Simulation results
show that isolate proxy can reduce the overall cluster memory usage by 30% while keeping
slightly better performance comparing to photons proxy. Lower memory footprint further re-
duces number of cold starts, which in turn let isolate proxy have better response time latency
under same restricted cluster size. From the results we can have the conclusion that it is wor-
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thy to trade fast start up and lower memory footprint for peak throughput in serverless context.
Integrating isolate proxy improves performance while reducing cost for memory consumption.

Although we have shown the advantages using isolate proxy via cluster-wide simulation, we
make a lot of assumptions to simplify the simulation and only use statistics of four workloads
we have measured, which is very restricted. In real-world serverless platform, execution dura-
tion, memory footprint and start up time of applications vary a lot [SFIG+20]. Trade-off be-
tween CPU configuration and execution time can also have huge impact for serverless platform
scheduler. Deploying large numbers of applications in isolate proxy with various configurations
in large-scale serverless system would reveal much more insights than our simulation.

On the other hand, using different isolates supply more security than needed for only allow-
ing same invocations from the same user. However, there are still many open problems need
to be addressed. While independent heap space of each Isolate can be used to limit memory
consumption of each invocation, there is no restrictions for CPU resources that each isolate can
access. As shown in image classification workload in Figure 4.7, contention for CPU resources
increases tail latency significantly. What’s more, all isolates inside common process are access-
ing the same file system, which leaves vulnerabilities for potential attacks. Further works can
be extended to add scheduler to provide resources fairness and file system isolation to increase
security, which would ultimately make isolate a lightweight abstract with fully virtualization
functionality.

GraalVM supports polyglot programming. Besides JVM-based languages, many dynamic lan-
guages like JavaScript, Ruby, R or Python can also be executed in native image format [Nat].
Allowing multi-language application in different isolate using native image would further ex-
tend the capability of isolate proxy as a general purpose serverless runtime.
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