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Abstract

As Cloud Computing moves toward Function-as-a-Service, applications are deployed as small, stateless

functions running inside a container. Typically, this requires a new container runtime for concurrent

invocations, however, runtime isolation imposes great latency and memory costs.

One solution to address this is enabling functions to share the same runtime, reducing the number

of cold starts, and, improving the memory footprint. However, in order to completely share the runtime,

the File System must be virtualized to ensure that multiple invocations running at the same time don’t

interfere with each other’s executions.

Thus, we propose a solution to this problem by leveraging Seccomp to intercept File System related

calls and modify them in order to ensure isolation between the different function executions.

In order to evaluate the implemented solution, we used multiple workloads with different degrees of

File System usage to assess how File System Virtualization affects different workloads. The evaluation

focuses on latency to assess whether we can introduce the File System Virtualization mechanism with-

out impacting the performance of the system. In addition to this, we measured memory utilization to

determine if the proposed solution impacts memory footprint.
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Resumo

À medida que Cloud Computing se aproxima de Function-as-a-Service, as aplicações são colocadas

em produção como pequenas funções sem estado a correr dentro de um container. Tipicamente, isto

requer um novo runtime para cada container, contudo, isolamento ao nı́vel do runtime implica grandes

custos em termos de latência e utilização de memória.

Uma forma de fazer frente a este problema é permitir que as funções partilhem o mesmo run-

time, reduzindo o número de cold starts, e reduzindo a utilização de memória. Contudo, para partilhar

completamente o runtime, há que virtualizar o sistema de ficheiros, de forma a garantir que funções

concorrentes não interferem umas com as outras, corrompendo o estado do sistema de ficheiros.

Desta forma, propomos uma solução para este problema ao utilizar Seccomp para intercetar chamadas

de sistema que interfiram com o sistema de ficheiros e modificá-las para garantir isolamento entre

funções concorrentes.

Para avaliar a solução proposta, usamos várias workloads com diferentes graus de utilização do

sisema de ficheiros para perceber como a introdução de virtualização do sistema de ficheiros afeta

diferentes funções. A avaliação foca-se na latência por forma a avaliar se a introdução do mecanismo

de virtualização impacta o desempenho do sistema de forma significativa. Adicionalmente, medimos a

utilização de memória para avaliar o impacto da solução no consumo de memória do sistema.

Palavras Chave

Function-as-a-Service; Partilha de Runtime; Seccomp; Virtualização de sistema de ficheiros;
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Introduction

Contents

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Context

Cloud computing has revolutionized the way enterprises and developers approach computing infrastruc-

ture, offering flexibility, scalability, and cost-efficiency. The Serverless model takes Cloud Platforms one

step further and relieves developers from infrastructure management, providing auto-scaling applica-

tions and bringing computing closer to being a utility with the pay-as-you-use billing model. As Cloud

Computing moves towards platforms that offer fine-grained virtualization like Serverless and FaaS, ap-

plications are deployed as tiny functions running inside a container or microVM [10]. Since the dawn

of the internet economy, internet companies need to handle their own Datacenters and infrastructure

1



to deal with fluctuations in demand, and it is easy to see how this might lead to inefficiencies when a

company provisions for a peak event that vastly surpasses regular usage. Serverless computing ad-

dresses this challenge by automatically scaling up during peak traffic and scaling down when demand

drops, approaching optimal resource utilization at all times. Typically, Serverless platforms allocate dif-

ferent VM instances for different invocations. However, the start time is frequently a lot higher than the

invocations’ executing times. Thus, memory footprint and startup latency are the biggest challenges in

Serverless. The overhead of running each function in a separate virtualized environment (like a con-

tainer or microVM) can lead to inefficient use of memory resources. Since Serverless platforms often

allocate new VM instances for new invocations, memory consumption can increase quickly, especially

in scenarios where functions are invoked frequently or for high-throughput applications. This increase in

memory consumption can lead to higher costs and worse performance, particularly when dealing with

large-scale or high-performance applications. Thus, cold starts are one of the key issues in Serverless

architectures. When a function is invoked in a Serverless environment, the platform often needs to provi-

sion a new VM or container instance to execute the function. This provisioning introduces a delay before

the function can start executing. According to an analysis of production AWS lambda workloads [11],

cold starts can go from under to 100ms to 1 second. If a cold start occurs, it can become a bottleneck for

real-time applications or other latency-sensitive systems, such as user interfaces, or financial transac-

tions. In those cases, the startup time can exceed the execution time of the function itself, undermining

the performance advantages of the Serverless model. By tackling memory footprint, startup latency,

and increasing support for stateful functions Serverless computing can expand its utility beyond simple

stateless functions and extend into more complex, real-time, and resource-intensive applications. As

cloud providers continue to innovate in these areas, the Serverless model will increasingly become a

foundation for scalable, cost-effective, and high-performance computing.

1.2 Problem

With this project, we aim to address some of the most critical challenges faced by Serverless platforms

like, memory footprint, startup latency, and support for stateful applications. By allowing multiple function

invocations to share the same File System, we seek to significantly reduce both memory usage and cold

start latency, thus improving the efficiency of Serverless architectures. In addition to this, File System

virtualization is a significant step towards better support for stateful applications, which are currently

difficult to handle efficiently in Serverless environments.

Existing virtualization techniques are still very expensive for such fine-granularity and thus, running

multiple function invocations inside the same VM/Container still has several limitations, like the lack of

external resource virtualization. Broadly, the options for isolating functions on Linux can be separated

2



into three categories. Containers, in which all functions share a kernel and some combination of kernel

mechanisms are used to isolate them. While this ensures that one function cannot interfere with another,

it leads to high memory consumption and frequent cold start delays. The second approach is Virtualiza-

tion, in which functions run in their own VMs under a hypervisor. Finally, language VM isolation, in which

the language VM is responsible for isolating functions from each other or from the operating system.

Virtual machines are too expensive in terms of memory and startup time and containers provide an

improvement but are still too slow compared to a solution that allows us to run multiple invocations inside

a single process within a VM, sharing resources like the File System, and this is what we want to enable

in this thesis.

Providers have to handle the trade-off between performance and provisioned resources for their ap-

plications. Significant advancements have been made in runtime sharing such as Photons and GraalVM

Isolates [12], however, File System Virtualization remains to be addressed. Virtualizing the File System

is a key component runtime sharing. In most Serverless platforms, the stateless nature of functions leads

to frequent calls to external data sources to retrieve application context. These calls lead to increased

latency and can create a significant bottleneck.

By virtualizing the File System, multiple function invocations can access the same resources and

share state information within the same VM or container, or even inside the same process. This reduces

the dependency on external data sources, reducing the number of network calls and thereby improv-

ing the performance of stateful applications. For instance, a function that processes large datasets or

libraries stored on disk could benefit greatly from a shared File System, as each invocation would no

longer need to independently load the entire context at startup. Instead, they could read and write to a

shared File System, reducing context loading and data access times and improving throughput.

In conclusion, enabling File System Virtualization represents a critical step towards Runtime Sharing,

improving the efficiency of Serverless platforms by enabling multiple function invocations to share the

same File System. This approach has the potential to significantly reduce memory footprint and startup

latency, while also improving the performance of stateful functions, addressing one of the key limitations

of current Serverless architectures.

1.3 Goal

As a step towards virtualizing Language Runtimes, the File System needs to be virtualized, enabling

shared utilization of its resources without losing consistency. This thesis presents a system that provides

lightweight File System Virtualization, for multiple function invocations running inside different threads

within the same process. It does so by intercepting and patching Native Image methods related to the

File System in order to ensure isolation when we have multiple applications running inside the same

3



language runtime. The goal of this thesis is to present a system that, enables File System Virtualization

in Serverless platforms without impacting performance aspects such as memory consumption, request

latency, and throughput. In doing this, we take a step towards addressing the inefficiencies in current

Serverless platforms and improving support for Stateful functions.

1.4 Proposed Solution

For this project we will build upon previous work done on Runtime Sharing, adding File System Virtual-

ization through the use of Seccomp and a copy-on-write mechanism.

Our approach leverages Seccomp to create a Sandbox for thread applications making modifications

to the File System. All the write calls as well as read calls made to previously modified files will be

redirected to a thread-specific sandbox cleaned after each function execution.

1.5 Document Outline

Throughout this document we will outline our approach to this problem, in Section 1 we have introduced

the problem identified and our goals. In the second section, we will provide context for our problem,

and introduce concepts relevant to the problem we intend to solve such as Cloud Computing and its

different offerings as well as Virtualization technologies and techniques. In the third section, we will

discuss research done into Runtime Sharing and High-Performance Serverless Computing, diving into

the similarities with existing projects as well as the challenges that still need to be addressed. We

present our Solution Architecture in the fourth section of this document, presenting an overview of our

design in the first subsection. Following this, we explain how we will leverage Seccomp in our project.

The fifth section describes the evaluation process and it’s where we define the metrics we will use to

assess whether our project was successful. To wrap up the document we have a final section where we

summarize the document and the results as well as, suggest future opportunities for improvements that

may arise from our solution.
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In this section, we introduce key technologies and concepts related to the problem we aim to address

in this thesis, as well as the technical components of the solution. It starts with an overview of Cloud

Computing and its different modalities and then presents existing Virtualization technologies like Virtual

Machines and Containers as well as Process-level virtualization mechanisms.

2.1 Cloud Computing

Cloud computing describes computing resources and available on-demand allowing for cost reduction

and reduced capital expenditures turning computing and infrastructure management into a utility for

companies, providing the illusion of infinite computing resources on demand and the ability to pay for the

use of computing resources as needed. This business model is built on economies of scale that allow

Cloud Providers to operate data centers at a significantly lower price per unit of computing, making it

extremely appealing to customers who want to deploy applications fast and without having to handle

all the complexity inherent to an Internet Business, as we will see below, different models of Cloud

Computing allow the customer to choose how much control or responsibility he will handle or delegate

to the Cloud Provider.

2.1.1 Infrastructure-as-a-Service

Infrastructure-as-a-Service [13] allows for increased productivity by enabling engineers to focus on busi-

ness and application logic as the platforms handle infrastructure and scaling. There are also security

advantages due to data centralization. Cloud computing arose out of the demand from companies to

expand their computing infrastructure to face the needs of their customers in a world of increasing dig-

itization. It started with Infrastructure-as-a-Service, providing high-level interfaces to abstract details of

the underlying infrastructure, typically using a hypervisor that runs the Virtual Machines as guests. The

client does not control the underlying physical infrastructure but manages the Operating System, stor-

age, and deployed applications. However, this model does not address significant challenges for the

developers such as load balancing, monitoring, and auto-scaling.

2.1.2 Platform-as-a-Service

As the next step in abstraction came Platform as a Service (PaaS) [13] which provided a development

environment to application developers where the Cloud Providers deliver a computing platform, including

an operating system, programming language executing environment, and a web server. Developers

build and run their software directly in the platform instead of managing the computing resources and

underlying infrastructure. With this improvement, came the capability to scale resources to match traffic
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and adapt to the customer demands. In this model the user only manages the application and the data

used by it, everything else is handled by the cloud provider.

With PaaS, computing came closer to a utility, in the sense that the customer only pays for what it

uses, leaving the infrastructure management and distribution to the provider. We will see that this notion

is taken even further in Software as a Service(SaaS) and Function as a Service (FaaS).

In the SaaS model users access applications and databases whose infrastructure and platform are

managed and deployed by the Cloud Providers. Typically the end users access a single entry point, a

load balancer that distributes the work over a set of virtual machines.

2.1.3 Serverless and FaaS

In Serverless platforms, developers write functions in high-level languages, pick the events that should

trigger their invocation, and let the platform manage everything else. Serverless decouples computation

from storage and allows developers to abstract away resource allocation while paying only for useful work

performed by the system. Serverless computing has become a mainstream cloud computing model by

abstracting away infrastructure management and allowing developers to write functions that auto-scale,

while only paying for the used compute time. This is appealing for several reasons, including reduced

work in operating servers and managing capacity, auto-scaling as well as being able to configure only the

events that trigger the function invocations and data sources providing the argument to those invocations.

The economics and scale of Serverless applications enable workloads from multiple customers to

run on the same hardware with minimal cost while preserving strong security and performance isolation.

FaaS delivers computing as a utility by providing fine-grained control over the work performed by a given

system down to the function invocation, allowing customers to pay strictly for the computational work

being done and abstracting away everything else.

In the FaaS model, code is deployed in the unit of functions whose resource management is handled

by the cloud provider. Function invocations are triggered in response to events which can be requests,

scheduled interruptions or even events to be consumed from a queue. This event-driven invocation can

be synchronous or asynchronous. For synchronous invocation, the service that generates the event

waits for the response from the function. On asynchronous invocation, the event is queued before being

consumed [14]. In this thesis, we aim to ensure isolation between invocations at the File System level

while allowing multiple invocations to use the same File System simultaneously and independently.

Currently, Serverless platforms rely on Virtual Machine [1] isolation, however, this can cause a great

performance penalty since instance startup time is significant, particularly when compared to function in-

vocation time. There are performance and isolation trade-offs between virtualization with strong isolation

and high overhead and container technologies that provide better performance sacrificing isolation. In

this thesis, we aim to improve the performance of Serverless Environments while ensuring File System

7



Figure 2.1: Different cloud computing models [8].

Virtualization. In the Function-as-a-Service model, tenants upload functions to be executed by a cloud

provider. A function is usually written in a high-level language and accepts input arguments to return the

result. The platform exposes endpoints where applications can send requests. This model allows users

to create short and stateless functions that can be invoked concurrently to handle large-scale workloads.

2.2 Virtualization Technology

2.2.1 Virtual Machines and Containers [1] [2]

Virtual machines (VMs) are an abstraction of a computer system providing the functionality, of a physical

computer. This abstraction enables mapping a single physical server into many virtual servers. Each VM

includes a full copy of the operating system as well as necessary dependencies for a given application,

even when running on the same host. This technology is leveraged by cloud services to provide virtual

computing and storage resources to multiple users, allowing for more cost-efficient, flexible, and, elastic

computing. However, this comes at a performance cost since virtual resources are typically less efficient

and run slower than a traditional computer.

On the other hand, a container is a standalone package of software that includes the application

code and all its dependencies. Containers share the underlying operating system and therefore do not

require a different operating system for each application, reducing duplication and increasing efficiency.

This portability allows for faster development and deployment at scale.

Containers isolate software from its environment, usually relying on isolation mechanisms built into
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the Linux kernel, such as cgroups, that provide process grouping, resource throttling, and accounting,

namespaces, which separate Linux kernel resources such as process IDs, and seccomp to control

access to syscalls. Multiple containers usually run on isolated partitions of a single Kernel running

directly on the hardware while cgroups and namespaces are also used at a higher level to separate

the containers from each other. By sharing the operating system, containers eliminate the need for

a hypervisor, decreasing the coordination costs aside from the hardware requirements of the solution,

since each VM would require a Guest Operating System and the system would require a hypervisor to

coordinate the different VMs. Thus, containers have less overhead, boot faster, and make more efficient

use of resources, however, they don’t provide the same level of isolation.

2.2.2 Process-level virtualization(fine-grained virtualization)

Process-level virtualization uses the resources to give an illusion of multiple processes and provide

isolation by leveraging constructs such as namespaces, cgroups to isolate threads from each other,

allowing them to share context and resources such as the File System and the Network. This technique

enables a shared state without using external storage and with less data redundancy, allowing us to

improve significantly on container and VM startup times as well as memory overhead.

Pushing virtualization into the runtime allows for reduced overhead and avoids cold starts. This can

be achieved by leveraging Native Image Isolates.

Native Images refers to technologies that enable to ahead-of-time compilation of Java code to a

standalone executable, the native image. This executable does not run on the JVM but instead leverages

the components of a Substrate VM that provides a runtime that enables faster startup time, and lower

memory overhead. GraalVM is an open/source JVM and JDK maintained and developed by OracleLabs,

through the Native Image, GraalVM provides a platform to improve the overall performance of Serverless

platforms, both in terms of memory footprint and startup time.

An isolate is a disjoint heap, allowing multiple tasks in the same VM to run independently. All isolates

then share the same ahead-of-time compiled code and access to the Image Heap, containing the static

variables which is particularly important in Serverless platforms since it allows to compile once and run

several times and in parallel while aspects such as garbage collection are handled independently. This

technology reduces the memory footprint since an isolate can be released when it is not needed, for

instance, if a function invocation is finished. Otherwise, if we had multiple tasks running on the same

heap it would be in use until the data was cleaned by the garbage collector. Isolates were designed with

fast creation and low memory overhead in mind as well as low impact on performance and thus are ideal

for Serverless applications while ensuring isolation. This feature is designed for runtime sharing, but we

will extend this to enable File System sharing among different invocations.

With isolates, the temporary objects allocated during function invocations taking place in isolates are
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Figure 2.2: Two isolates in the same process.

freed immediately when the isolate is deleted, without the need for garbage collection. This allows for

lower memory usage without the overhead introduced by garbage collection. In addition to that, the

fact that the isolate’s image heap is initialized during image generation allows for further optimization by

pre-initializing static variables and objects to be used at runtime.

While memory isolation gives security guarantees in the sense that objects from one isolate cannot

be accessed by another, Native Image Isolates do not enforce isolation at the file system level as they

execute under the same file system namespace.

A Linux Namespace provides a mechanism for isolating groups of resources within the kernel such

that different sets of processes have access to different sets of resources as specified by the program-

mer. File System namespaces are usually referred to as mount namespaces and are used to isolate

mount points such that processes in different namespaces cannot view each other’s files. The names-

pace behaves as if it is at the root of the file system and cannot access other portions of the file system

unless they are mounted into the namespace.

2.2.3 Syscall interception

Linux Syscalls represent a well-defined interface between user applications, running outside of the Op-

erating System kernel, and the OS kernel. Applications generally do not directly interact with hardware

or networking, instead, they call the kernel through system calls in order to execute those tasks. The
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kernel then provides capabilities like process management, memory management, and, input/output

calls. In addition to this, this separation of concerns allows the kernel to manage resources for different

applications as well as enforce security policies.

Figure 2.3: Kernel Responsibilities [9].

Syscall interception refers to the ability to monitor, modify, or prevent system calls (syscalls) made by

a process. Syscalls are requests from a user-space program to the operating system kernel for low-level

services like File System operations, memory allocation and, process management. By intercepting

these syscalls, security tools, debuggers, and system monitors can observe or control the behavior of a
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process, offering a layer of supervision or restriction.

Some of the most common techniques for syscall interception include tools like ptrace, which pro-

vides tracing and debugging capabilities, and Seccomp, which allows processes to define mechanisms

to restrict the permitted syscalls.

System call interception is already a valuable tool for technologies used in Cloud Computing such

as containers, which leverage Seccomp for security profiles and container isolation [15]. In this project,

we’ll leverage Seccomp to provide File System virtualization since we can use it to modify and intercept

system calls that directly interact with or modify the File System.

2.2.3.A ptrace

The ptrace system call enables the tracer process to monitor and control the execution of another

process. This system call is used by gdb to inspect the arguments made to other system calls as well as

examine and change the memory and registers of the process or thread being traced. ptrace works by

attaching a target process to the calling process and intercepting signals and syscalls, these signals can

be used to place breakpoints inside the traced process’ execution for debugging, or merely for system

call tracing.

2.2.3.B Seccomp

Seccomp stands for Secure Computing and allows a process to define a mechanism to restrict the

system calls available or intercept all the system calls performed by child processes or threads. This

feature can be leveraged to reduce user privileges or to restrict actions within a given container or

application. Seccomp is widely used by container runtimes, browsers and, other applications that require

isolation or want to reduce the kernel attack surface.

In Strict Mode, Seccomp only allows exit(), read(), sigreturn() and write() to open file de-

scriptors, killing the process if any other system calls occur. The strict mode offers a lot of security

guarantees, however, its nature prevents it from being useful for more complex programs or systems

where we want to provide a different set of privileges to different users or applications, or even multi-

threaded applications where we want to isolate the different threads, as is the case in this Thesis.

With seccomp-bpf mode, Seccomp filtering is configured through customizable policies expressed as

a BerkeleyPacketFilter(BPF) program, allowing a process to specify the allow-listed or forbidden calls, as

well as specifying a default behavior. The Seccomp filter works through notifications, then the process

can create a new process or thread(s) to handle the Seccomp notifications. Seccomp-bf provides a

number of actions to be taken depending on the result of the process, like killing the process, allowing

the system call, or notifying an attached tracer via SECCOMP RET ALLOW.
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To interact with the filter, the process needs to use the SECCOMP FILTER FLAG NEW LISTENER as an ar-

gument to the seccomp() syscall: seccomp(SECCOMP SET MODE FILTER, SECCOMP FILTER FLAG NEW LISTENER,

&prog); , on success this will return the file descriptor we can use to poll the seccomp notifications. In

order to process the notifications we will use the structures shown below.

struct seccomp_notif_sizes {

__u16 seccomp_notif;

__u16 seccomp_notif_resp;

__u16 seccomp_data;

};

struct seccomp_notif {

__u64 id;

__u32 pid;

__u32 flags;

struct seccomp_data data;

};

struct seccomp_notif_resp {

__u64 id;

__s64 val;

__s32 error;

__u32 flags;

};

These structures will allow us to process the system calls based on the information provided by them,

in order to sandbox syscalls made by a given process or thread id, for example.

2.3 Summary

In this section, we went over the key technologies and concepts related to Cloud Computing, Virtual-

ization, and how we can use these technologies to provide File System Virtualization, thus improving

the performance of Serverless platforms by improving Runtime Sharing while also extending support for

stateful functions by reducing the need for access to external data sources.
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In this section, we will dive into relevant research work done on the topic of Runtime Sharing and

High-Performance Serverless Computing. As we will demonstrate, there are several points of contact

and techniques we can leverage in our project.
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3.1 Photons

[16] Photons reduce function startup time and memory footprint by allowing runtime and data sharing

across invocations. This reduces memory consumption significantly without performance degradation as

well as the number of cold starts. Photons leverage the fact that multiple invocations use the same code

and need the same environment, pointing out that data and runtime isolation are particularly inefficient

in terms of memory utilization. This happens as a result of the fact that memory is not shared among

invocations, and runtime initialization since the runtime needs to be booted for each invocation. This

inefficiency has cascading negative impacts: colt starts, lower throughput, higher latency, and higher

cost.

In order to address this inefficiency, Photons provide an abstraction that allows the developer to

specify and manage data to be shared across the different photons, while the system automatically

ensures data separation. A photon is a lightweight function executor that contains the private state of

a single invocation while sharing the runtime and common application state with the other photons. All

photons within the same execution environment share the same object heap and the application runtime

code cache, thus leveraging all the optimized code to achieve faster execution. By enabling runtime and

application state sharing among concurrent invocations, Photons are able to reduce function memory

consumption by at least 25% per invocation without performance degradation as well as reducing the

number of cold starts by 52%.

In this project, we aim to build on this concept by allowing different function invocations to share

the same File System. By doing this we will provide a much lighter solution compared to the tradi-

tional platforms since the File System does not need to be replicated for each invocation. To provide

data separation among multiple executions within the same runtime, writes are performed on a local,

invocation-specific copy of the given field, this is what we aim to do, but for the File System and with

the use of File System Namespaces. Photons leverage unique identifiers to create a private temporary

state, extending this concept to the File System.

3.2 FAASM [3]

Similarly, FAASM also aims to tackle the problem of stateless isolation, which prevents functions from

sharing memory. The overhead generated by stateless isolation is particularly taxing for big data pro-

cessing, one of the main applications of Serverless computing, due to its event-driven nature and easy

connection with data sources. As mentioned previously, function isolation results in data duplication and

performance as well as memory inefficiencies.

The authors propose an isolation mechanism that enables fine-grained control over memory with a

two-tier system, combining a local tier of shared memory and a global tier for cross-host synchroniza-
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tion. Sharing resources contradicts the isolation goal, hence, providing shared access in a multi-tenant

Serverless environment is a challenge. Thus, FAASM proposes a memory isolation abstraction for a

high-performance Serverless platform, isolating the memory of executing functions while allowing mem-

ory regions to be shared between functions in the same address space. As stated, the stateless nature

of the containers forces any relevant computation state to be stored externally or passed between invo-

cations and, thus the need for solutions that provide a more lightweight isolation mechanism.

Faaslets deliver lightweight isolation by enabling lightweight isolation for CPU and network using

Linux cgroups while providing a host interface for file system access. However, we want to virtualize

the file system and allow multiple applications to share the same file system. In addition to this, FAASM

restores Faaslets from pre-existing snapshots to reduce initialization times. FAASM is able to perform at

a high level without compromising isolation by leveraging Faaslets, which provide memory safety while

sharing an in-memory state.

3.3 GroundHog: Efficient Request Isolation in FaaS [4]

GroundHog aims to address security concerns that may arise due to container reuse through isolation

of sequential invocations for a function by efficiently reverting to a clean slate.

It leverages two properties of typical FaaS platforms: that each container executes at most one func-

tion at a time and legitimate functions do not retain state across invocations This enables GroundHog

to use snapshots to restore function state between invocations independently from the runtime with-

out introducing significant latency and throughput overhead. Sequential request isolation is critical if a

function can be invoked by users with different permission sets since any information leak could have

relevant security implications.

This system addresses relevant challenges but has a different aim since this thesis aims to ensure

File System isolation for multiple functions running concurrently on the same container. Furthermore,

the assumption that each container executes at most one function at a time does not hold for this project

since our system is designed to improve the performance of Serverless platforms with multiple functions

running on the same process.

Similarly, in this project, we will clean up the thread-local File System context after every function

invocation and return the thread execution to the original file system context so every new function will

observe the original state of the File System since the File System context will be built as needed for

every invocation.
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3.4 Pushing serverless to the Edge with WebAssembly runtimes

[5]

While the Serverless model is ideal for handling variable workloads, cold-start latency, as well as CPU

and memory limitations on hosts make it unable to support latency-critical services. WebAssembly, a

portable, binary instruction format for memory-safe execution, makes it possible to build suitable con-

tainer runtimes that provide great improvements in throughput and memory consumption. Its portability

means that a function can be compiled whenever a runtime exists. Wasm, a contraction of WebAssem-

bly, was intended to act as a compilation target for low-level languages such as C or C++ with the goal

of enabling the execution of programs in those languages on the web. However, it has been recently

considered for use in Serverless as it can be started very fast, and, despite being slower than native

code, can be compiled to it.

This paper suggests replacing Docker-based containers with WebAssembly runtimes, enabling sig-

nificant cold-start latency reduction while increasing throughput. Similarly, we aim to provide a model

with finer-grained resource elasticity when compared to the traditional runtimes, by enabling file system

sharing and running multiple applications sharing the same file system in a single VM we could improve

performance while only requiring extra memory for the local copies of the files each thread is reading or

updating.

3.5 RunD: A Lightweight Secure Container Runtime for High-density

Deployment and High-concurrency Startup in Serverless Com-

puting [6]

RunD is a lightweight secure runtime that aims to address low deployment density and slow startup

performance at high concurrency in secure containers isolated through microVMs. Traditional containers

are implemented based on Namespaces and cgroups [17] and thus cannot ensure the same isolation

provided by traditional Virtual Machines. The single-container-per-VM secure container model isolates

each function invocation at a cost of heavy memory overhead and footprint since each microVM needs

to run its exclusive guest operating system.

With this project, we aim to achieve the same isolation level provided by RunD but without creating a

new process, using isolates so that a segment of memory is dedicated to a given invocation, enabling a

solution that is both faster and lighter in memory footprint when compared to RunD.
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3.6 Container Hardening Through Automated Seccomp Profiling

[7]

This paper proposes a mechanism to generate custom Seccomp filters for Production-ready systems

by capturing all the System calls made by a container during the testing stage of the CI/CD pipelines

and generating and deploying custom Seccomp profiles. This solution uses eBPF tracing capabilities to

create a hook on the syscall and register it in an output file. Then, it whitelists all the syscalls detected

in the Docker Seccomp Profile. By doing this, the paper facilitates incorporating Seccomp filtering within

production systems, reducing the attack surface and increasing container Security.

In this thesis, we’ll leverage Seccomp to restrict access to the File System and enable isolation for

multiple threads executing function invocations within the same process while sharing the same File

System.

3.7 Discussion

As we have discussed the systems mentioned above, there are systems that provide lightweight isolation

for CPU and Network, but don’t enable File System sharing and don’t virtualize the File System. In

summary, a number of techniques have been analyzed:

• Lightweight isolation for CPU and Network;

• Request isolation in systems where each container only executes one request at a time

• Runtime sharing with data separation among different invocations;

• Isolation among concurrent requests using a single-container-per-VM model and using a different

process for each execution;

• Syscall Interception using Seccomp for Container Isolation;

However, none of these projects achieve our goal of virtualizing the file system and allowing it to be

shared among concurrent function invocations running on a single process while ensuring isolation

between concurrent and consecutive requests.
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In this section we’ll go over the System Architecture, describing how it ensures File System Isola-

tion as well as the key performance aspects of the system and the trade-offs when compared to other

alternatives. Next, we describe the Seccomp interface, how we use it to intercept system calls, and

how it helps the system provide File System Virtualization. In Section 4.5 we explain how the system

does System call interception and how it modifies the File System syscalls to achieve our goals. The

last two sections describe the Local Copy mechanism used to store the thread-local File System context

and the Post Execution Cleanup mechanism we use to ensure isolation between consecutive function

invocations.
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4.1 System Architecture

Figure 4.1: Architecture Model for our system.

As shown in Figure 4.1, the entry point to our system is the main worker thread which will be responsible

for creating the worker thread pool to handle the benchmark workloads. This thread installs the Seccomp

filter and updates a shared structure with the Seccomp file descriptor which will be used to poll the

Seccomp notifications.

The system is then divided into two components, the worker threads which execute the benchmarks,

and the monitor thread which polls the Seccomp notifications, processing File System related calls to

ensure isolation between the concurrent threads. In order to isolate the threads, the monitor thread will

intersect all open() and open at() and use a copy-on-write mechanism, writing to a thread-local-copy.

All subsequent reads to previously modified files will then be redirected to the local copies while reads

to previously unaltered files will go through unmodified.

The monitor thread is responsible for enforcing the copy-on-write mechanism, ensuring the File Sys-

tem Syscalls will only modify the File System context of the calling Worker Thread to ensure isolation. If

the calls don’t depend on or don’t affect the File System context, meaning that they are read-only calls

to files previously unmodified, they will be allowed to proceed so that they can be executed by the kernel
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without being modified. For every other case, they’re adapted to ensure isolation, meaning that they will

execute on thread-local copies of the files.

To preserve isolation between consecutive function executions in the same thread, at the end of each

thread execution, the files created during that execution are deleted and the local copies are deleted.

This architecture supports multiple function executions running in parallel in the same process and

sharing the same File System, thus providing a lightweight File System Virtualization mechanism.

4.2 File System Isolation

Without the isolation mechanism, concurrent File System executions could modify the files that other

executions would depend on, corrupting the original File System state. If function executions depend on

the state, without isolating concurrent and consecutive executions the system wouldn’t be deterministic,

in that the same series of function executions could result in different final states. Lack of isolation

can result in inconsistent or incorrect output, data loss, or system crashes. For instance, one thread

may open and modify a file while another thread is simultaneously reading it, leading to unpredictable

behavior or a corrupted state that differs from the expected result.

In contrast, a system that provides File System isolation ensures that concurrent and consecutive

executions are separated, preventing unintended side effects. Isolation allows for deterministic behavior

because each thread operates on its independent copy of the File System, or in this case, local copies of

previously modified files. With a copy-on-write mechanism, worker threads can modify their local copies

of files without affecting the global File System or other threads’ local copies. This guarantees that the

system will behave predictably, ensuring that repeated function executions with the same inputs will yield

the same outputs.

The benefits of File System isolation are particularly significant in scenarios that require strong con-

sistency and repeatability, such as benchmarking, testing, and sandboxed execution environments. By

isolating File System operations, systems can prevent data corruption, ensure that performance met-

rics are reliable, and maintain security by preventing unintended access to shared resources. Isolation

mechanisms play a critical role in Cloud Computing environments ensuring that each execution executes

in a clean, consistent, and isolated environment, protecting both system integrity and data accuracy.

Additionally, isolation reduces complexity for developers in handling concurrency, as the need for

explicit locks or complex synchronization mechanisms around File System resources is minimized. This

helps avoid common issues like deadlocks, race conditions, and contention, improving system stability

and performance. By relying on a copy-on-write mechanism, and redirecting the File System syscalls

we can avoid concurrency-related performance penalties. The copy-on-write mechanism ensures that

local copies are created only for files previously modified by the executing worker thread.
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4.3 Performance Discussion

As mentioned previously, without a File System isolation mechanism, a Serverless runtime cannot allow

concurrent function executions to share the same File System. Currently, the only readily available

mechanism is to create a new subprocess using clone(), copy all the data required for the execution to

a new File System root created using chroot and, execute the function in the root.

This approach has several drawbacks, first, all the File System context required for the function

execution needs to be copied before every function execution, including files that only need to be opened

for reading. In addition to the performance costs there’s a significant disk space usage increase in

this approach. Additionally, every function execution requires a new process to be created, while a

thread-based approach allows for thread reuse. Thread pools allow for efficient execution of short-lived

functions, as threads can be recycled after completing a task. This approach dramatically reduces the

startup cost and improves system throughput, making it ideal for the typical Serverless environment

where functions execute quickly. On the other hand, creating a new process is more expensive than

creating a new thread as it requires setting up a separate memory space. If we take into account that

function executions tend to be short and don’t usually require a lot of File System-related operations, the

overhead becomes even more significant.

The drawback of the approach proposed in this document is that all the File System syscalls go

through the monitor thread, however, if we take into account that function executions are usually short

and don’t primarily rely on File System operations the overhead is not as significant, particularly when

compared to when compared with copying the whole File System context. Additionally, this system

doesn’t modify open calls for reading in files that weren’t modified previously, which reduces the number

of interventions by the monitor thread, and the overhead introduced. Furthermore, the implementation

proposed in this document supports the creation of more than one monitoring thread, which would

decrease the latency of File System-related requests and decrease thread waiting time. This could be

done by installing more than one filter and portioning the worker threads so that the load is divided by

the different monitor threads, each polling from a different Seccomp file descriptor without any additional

need for synchronization.

4.4 Seccomp Interface

In this section we’ll go over how our system interacts with Seccomp to intercept File System related

syscalls to be emulated by the monitor thread.
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4.4.1 Requirements

• Function Isolation File system-related calls from worker threads are intercepted and redirected

to the appropriate copy of the file.

• Efficient Syscall Interception Only File System-related syscalls are intercepted, with all the other

calls being allowed to proceed. By doing this, we minimize latency impact while maintaining security

• User-Space Handling File System-related calls are forwarded to user space to be patched by the

monitor thread before being allowed to proceed to the kernel

4.4.2 Solution Design

The system proposed in this document leverages Seccomp to intercept File System related Syscalls, the

main worker thread installs the Secommp filter and retrieves its file descriptor for notification polling. This

Seccomp filter configuration intercepts File System related calls, sending a notification to the Seccomp

file descriptor. The filter allows all the other calls, enabling them to be executed by the kernel without

any additional modifications.

The filter is defined and installed as follows:

int install_seccomp_filter () {

struct sock_filter filter[] = {

BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, arch))),

BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, AUDIT_ARCH_X86_64, 1, 0),

BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_KILL),

BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),

BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_close, 2, 0),

BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_open, 1, 0),

BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_openat, 0, 1),

BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_USER_NOTIF),

// default rule

BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_ALLOW),

};

struct sock_fprog prog = {

.len = (unsigned short)(sizeof(filter) / sizeof(filter[0])),

.filter = filter,
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};

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {

perror("error: failed to prctl(NO_NEW_PRIVS)");

return -1;

}

int fd = syscall(SYS_seccomp, SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_NEW_LISTENER, &prog);

if (fd < 0) {

perror("error: failed to seccomp(SECCOMP_SET_MODE_FILTER)");

return -1;

}

return fd;

}

The monitor thread will then poll the Seccomp FD for notifications, and process them, redirecting

open calls that intended to change a file or read from a previously modified file. At a high level, the

Seccomp integration works as described in the pseudo-code below:

Algorithm 4.1: Seccomp Handler Pseudo-Code
seccompFd← InstallSeccompFilter())

while True do
receiveSeccompNotification()

if isReadOnlyCall() OR fileNotModified() then
executeSyscall()

else
createLocalCopy()

executeSyscallOnLocalCopy()

4.5 System call interception and emulation

As mentioned, the system will intercept and modify open() and open at() syscalls. Whenever one of

these is called, the monitor thread checks if this file is tracked, by acessing the Local Copy Mechanism

4.6 and, if the file will be opened only for reading. If both of these are true, the syscall is executed

unmodified. This will reduce the overhead by ignoring calls that have no impact or dependencies in

relation to the File System state.

Otherwise, the monitor thread gets the local copy path, modifies the file path in the File System

arguments, and, tracks the open file. To track the open file, it checks all the open files for this thread and

stores this file path if it isn’t present.
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4.5.1 Requirements

• Selective Interception As guaranteed by the Seccomp Filter, only open() and open at syscalls

are patched

• Efficient copy-on-write To avoid unnecessary duplication, we extract the open call flags and only

track the file the call opens the file for writing or if it is reading from a previously modified

4.5.2 Implementation

When the Seccomp handler intercepts open() and open at() syscalls, it calls the custom handler for

this function. The handling then happens as described below:

1. The system checks if the file is being opened for reading only, if it is and the file wasn’t modified

previously the syscall proceeds to the kernel unmodified

2. If it is a read call but the file was modified previously, the read call is redirected to the local copy by

modifying the pathname in the syscall args.

3. If it is a write call, the system creates a local copy, adds the file to the open file entries and, copies

the original content to the local copy so that the thread can then modify the original context

4. The system returns the file descriptor of the accessed file, be it the original file or the thread-local

copy

This syscall interception and emulation mechanism enables efficient File System Virtualization, show-

ing only one File System state to the different threads, but allowing them to execute independently while

minimizing overhead.

4.6 Local Copy Mechanism

To manage thread-local copies, the monitor thread converts the original pathname into the local copy

pathname. To do this, we extract the worker thread ID from the seccomp notification. Then, each

tracked file is placed in /tmp/THREAD ID/ORIGINAL PATH, thus, we are able to retain the original File

System structure inside each local copy stored in the tmp directory.

4.6.1 Requirements

• Function Isolation Each function execution should only access its own File System state so that

it can execute correctly without corrupting the original state
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• Efficient Copy-on-Write To avoid unnecessary duplication, we leverage copy-on-write to ensure

a local file copy is only created if the file was modified by the thread

• File System Virtualization Each function sees the same File System structure, but underlying

access is redirected to local copies by the monitor thread

4.6.2 Solution Design

typedef struct {

int fd;

char pathname[MAX_PATHNAME];

char local_copy[MAX_PATHNAME];

} open_file_t;

typedef struct {

pthread_t thread_id;

open_file_t open_files[MAX_OPEN_FILES];

int num_open_files;

} thread_open_files_t;

thread_open_files_t thread_open_files_table[MAX_THREADS];

pthread_mutex_t thread_table_mutex = PTHREAD_MUTEX_INITIALIZER;

Files are stored in a thread open files t array, where each entry of the array stores all the open

files for a given thread within the thread open files t structure. This struct stores the thread id, an

array with the open files and, the number of open files. Each open files t contains the file descriptor,

the original path and, the path to the thread-local copy.

Every time a new thread is created, a new entry the system creates a new entry in thread open files table,

mapped to its thread id. The thread will then update this entry throughout the function invocation.

Once the function execution is complete, its entry in the table is cleared, and all the created files in

/tmp/THREAD ID are removed.

All modifications to thread open files table are synchronized with a mutex to ensure that threads

can safely create their entries. No further synchronization is needed since access to the table entries is

based on thread id and each function will operate on its own file system context.
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4.7 Post execution Cleanup

After each execution function execution, the worker thread iterates over all the modified files, if the file

existed previously, it only deletes the reference in the open files table. If the file didn’t exist previously, it

deletes the file from the thread-local tmp directory altogether.
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In this section, we’ll go over the Evaluation plan, discuss the metrics we’ll use to evaluate the system

and, describe the benchmarks and how they are relevant to different aspects of the system. After that,

we’ll discuss the experiment results and draw conclusions from the performance of the system.

5.1 Evaluation Plan

As key performance metrics, we will evaluate latency, application throughput and, memory footprint. We

accomplish this by using benchmarks and workloads related to the File System that approximate the
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workloads of production systems. We will do so by using benchmarks and workloads based on the ones

used by existing systems such as Photons [16].

As proposed in Shahrad et. al [18] we will use workloads based on real traces in order to properly

assess the performance of our system. In order to evaluate our system we intend to collect the following

metrics:

• Application throughput;

• Execution time per function invocation;

• Seccomp Filter installation time;

• Memory usage;

We will compare the performance with and without File System Virtualization and assess scalabil-

ity by checking for overhead introduced as we increase the number of threads and executions. More

specifically, we aim to measure how fast we can handle File System operations and if the virtualization

mechanism has a significant impact on performance.

We intend to benchmark our system against a traditional system that doesn’t ensure isolation, and

against a virtualization alternative using chroot. The goal of these experiments is to determine if the sys-

tem is able to introduce File System Virtualization without impacting performance and memory footprint.

5.2 Evaluation Hypotheses and Expected Outcomes

With our evaluation experiments, we aim to validate whether the goals of this project have been achieved

by answering the following questions:

• Is there any significant overhead introduced by System Call Filtering and interception? We

expect our system to introduce minimal overhead, particularly when compared to other isolation

mechanisms like chroot. 5.5

• How will the overhead scale as the number of threads and executions increases? We expect

that the system will scale efficiently and that, as workloads get larger the initial setup costs will be

amortized. 5.6.6

• What is the impact of our system on workloads that don’t access the File System? We

expect negligible overhead for workloads that don’t access the File System, as the virtualization

layer should only affect file system-related operations.
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• How does our system perform on file system-intensive loads that depend on the thread-

specific context? We expect the system to handle file system-intensive operations efficiently,

without introducing significant overhead, particularly when measured against chroot. 5.6.2 5.6.2

5.6.3

• How does File System Virtualization affect the memory utilization of the Runtime We antic-

ipate that memory usage will increase slightly due to the virtualization layer when compared to

non-isolated systems, but will be lower than other isolation alternatives like chroot. 5.7

5.3 Evaluation environment

The execution times were obtained using a Linux machine of the DPSS cluster at INESC-ID Lisbon

with a Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz processors with 56 cores. Due to availability

constraints, we didn’t have exclusive access to the instances at all times so the benchmarks use only 50

threads.

5.4 Experiments

In order to evaluate our system, we’ll use three different types of function executions:

• No Isolation We’ll run the benchmarks on a system without any file isolation to establish a baseline

for the latency and overhead introduced.

• Chroot In this mode, all function executions will run on a child process executing on a new File

System root, fetching all the required File System context at the beginning of the execution.

• File System Virtualization In this mode, we’ll use the Seccomp Filter and the copy-on-write mech-

anism to ensure File System Isolation between concurrent and consecutive function executions

With these execution modes, we will be able to compare the performance of our system with a system

that provides the same isolation guarantees and compare performance as well as comparing it with a

system without any File System isolation to measure the overhead introduced.

5.5 Seccomp installation overhead

In order to assess our solution, we want to understand if adding Seccomp introduces any significant

overhead to our system. Seccomp installation only needs to happen once and is done by the main

worker thread. After measuring this in our benchmarks, we have observed that the average time to

install the Seccomp filter is around 0.2 milliseconds.
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5.6 Benchmarks

To assess the performance of the system, we’ll use multiple benchmarks:

• Hello World This simple benchmark will allow us to measure the overhead introduced by the sys-

tem for functions that do not interact with the File System. Additionally, this benchmark allows us to

isolate the overhead that results purely from the virtualization mechanism.

• Read Only A read-only benchmark allows us to measure the performance impact of the virtualiza-

tion mechanism on the system in workloads where functions only read from the File System.

• Read and Write to Files This benchmark allows us to fully test our system and assess the per-

formance introduced by multiple concurrent reads and writes to the same files. The benchmark is a

good test of the system’s copy-on-write mechanisms, concurrency, and synchronization in file system

operations, providing a realistic scenario that mimics the behavior of production systems.

• Fibonacci This benchmark allows us to test the performance of our system in a CPU-intensive

task.

• File Hashing This benchmark allows us to assess the performance of our system in an example

where functions read and modify a single file

• Misc To simulate a real-world benchmark we’ll execute a function that randomly selects one of

the previously described functions and executes it. This benchmark provides a holistic view of the

system’s performance by introducing a mix of operations, such as CPU-intensive tasks, read-heavy

workloads, and file modifications. The randomness in function execution mirrors production work-

loads, providing a more reliable and comprehensive picture of the system’s overall performance

under diverse conditions.

5.6.1 Hello World

First, we want to understand how the execution time evolves as the number of executions increases to

assess the scalability of the function, in figure 5.1 we can see that there’s no visible overhead introduced

by the system when compared to a simple solution without any File System Isolation. This benchmark

shows that the system doesn’t affect the parallel execution of simple programs that don’t interact with

the File System.
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Figure 5.1: Average time to execute Hello World across different execution modes.

As we can see, by looking at figure 5.1 we can’t detect any meaningful overhead introduced by our

solution. To make sure there’s no performance impact we’ll evaluate only the base case and our system

in figure 5.2. Our File System Virtualization solution vastly performs Chroot, as it needs to create and

move to a new root in every invocation, while in the other modes of execution, the threads are reused.
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Figure 5.2: Average time to execute consecutive Hello World with and without FS Virtualization.

As we can see, there’s no distinguishable overhead between the two executions, and as the num-

ber of executions increases the two average execution times converge. The execution time decreases

because, unlike with Chroot, the threads are reused and so the initial thread creation overhead is amor-

tized as the number of executions increases. This effect is more significant in Hello world than in other

benchmarks due to its shorter execution time.

5.6.2 Read Only

First, we want to understand how the execution time evolves as the number of executions increases to

assess the scalability of the FS Virtualization mechanism, in figure 5.3 we can see that the overhead

introduced by the function scales well as the executions increase. Similarly to the previous benchmark,

the time when using Chroot is significantly larger than in the other modes so the figure only displays the

other two so we can compare the performance.

The exclusion of Chroot from the graph allows us to focus on the virtualization mechanism’s perfor-

mance compared to a baseline. Despite executing multiple read calls concurrently with a large number
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of threads, the overhead remains low, and we observe that by tuning the number of monitor threads, the

overhead can be further reduced. This benchmark demonstrates that the system handles read-heavy

workloads efficiently, even under high concurrency.

The program executes 5 read calls so the overhead is between 0.1 and 0.15 milliseconds, even taking

into consideration that we’re running 50 worker threads and only one monitor thread, by increasing the

number of monitor threads we can bring this overhead down significantly without the need introducing

any synchronization as the Seccomp notifications would be polled from different file descriptors. Note

that this benchmark only performs file system operations so the threads wait for responses from the

monitor thread at the same time, mixing file system accesses with other operations as would be expected

in a production workload would yield even better results.

Figure 5.3: Average time to execute Read Only Benchmark with and without the filter.

Figure 5.3, shows a decrease in average execution time for the FS Virtualization mode as the initial

setup costs of the virtualization layer get amortized.
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5.6.3 Multiple Reads and Writes

Figure 5.4: Average time to execute multiple read and write operations across execution modes.

We want to understand how the system behaves in the worst-case scenario, a workload composed

exclusively of accesses to the File System, where the executing threads modify and read previously

modified files, always triggering the copy-on-write mechanism. By analyzing the results in figure 5.4, we

can see that the overhead introduced remains stable as the number of executions increases, showing

that it scales well while performing better than Chroot, an alternative that provides the same isolation

guarantees.
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Figure 5.5: Average time to execute Reads and Writes and without FS Isolation.

Given that each function execution performs 13 File System operations, the overhead converges

to around 0.92 milliseconds per File System operation. Taking into account that this is the worst-case

scenario, where all the functions execute multiple context-dependent file system operations in parallel

the overhead introduced is expected, as the waiting time increases as a result of a larger processing time

by the monitor thread. The overhead could be significantly reduced by increasing the number of monitor

threads, which would result in lower idle time by the threads. Note that the system only intercepts open

calls and not read or write calls, which occur at a higher frequency and involve more data. These don’t

need to be intercepted as they operate based on the file descriptor and the file descriptor will always

point to the copy selected by the monitor thread.

Even though the overhead introduced is significant, we expect it to be amortized when we combine

multiple types of function invocations, as the monitor thread workload will be spread out across the

benchmark time.

The stable overhead across an increasing number of executions highlights the efficiency of the sys-

tem’s copy-on-write mechanism, as it is able to handle concurrent workloads without degrading perfor-
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mance.

5.6.4 Fibonacci

This benchmark allows us to understand how the system affects CPU-intensive functions that don’t

interact with the file system. Each function invocation calculates the first 50 numbers of the Fibonacci

sequence and prints the result.

Figure 5.6: Average time to execute the Fibonacci benchmark across different modes of execution.

Similarly to what we observed with other functions 5.6, the system vastly outperforms chroot as the

performance penalty incurred from creating and changing to a new root for every invocation significantly

affects the execution time.
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Figure 5.7: Average time to execute the Fibonacci benchmark with and without FS Virtualization.

As can be seen on 5.7, the system doesn’t introduce any significant overhead when compared to an

alternative without isolation and the execution times quickly converge.

The drop in average execution time is expected and reflects the fact that the threads are reused, so

the thread creation time is progressively less significant to the overall execution time.

5.6.5 File Hashing

We’ll use this benchmark to test function invocations that access the file system and perform some form

of computation. The file hashing function reads the content of a file and replaces it with its SHA-256

hash.
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Figure 5.8: Average time to execute the File Hashing benchmark with and without FS Virtualization.

By looking at figure 5.8 we can see that the File Virtualization mechanism scales well and that

the latency impact doesn’t increase as the number of executions increases. As expected, the system

introduces some overhead as the function modifies a file, triggering the copy-on-write mechanism.

The overhead is around 2ms, which can be significant for this function execution but can be explained

by the fact that the worker threads have to wait for the monitoring thread to process the open() call before

they can modify the file. As this benchmark only executes this function, the waiting time increases,

causing the overhead we observe in the graph.

Similarly to the previous File System-related functions, we expect the system to be able to mitigate

the overhead once we combine multiple types of functions in the next benchmark.

5.6.6 Misc

This benchmark randomly executes one of the functions defined above and aims at replicating a real-

world production workload. It offers a more reliable picture of the system’s performance as the monitor

thread has a more balanced load and is neither free nor overloaded with notifications.
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Figure 5.9: Average time to execute the Misc benchmark across execution modes.

Similarly to what we have seen on other benchmarks, figure 5.10 shows that Chroot performs signif-

icantly worse than the baseline and the system with File System Virtualization.
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Figure 5.10: Average time to execute the Misc benchmark with and without FS Virtualization.

Figure 5.10 shows that as the number of executions increases, the setup and initialization overhead of

the Virtualization system become less significant and overall don’t impact the performance of the system,

showing that we can introduce FS Virtualization, ensuring isolation without impacting performance. By

varying the functions executed and combining functions with different degrees of File System utilization

the overhead introduced becomes negligible and the average function invocation time converges. This

indicates that FS Virtualization is a viable option for Serverless Platforms, as the initial overhead can be

amortized over time, and performance can stabilize to match non-virtualized configurations.

5.7 Memory Consumption

In addition to execution time, it is important to measure the system’s memory consumption to understand

if introducing File System Virtualization impacts the memory footprint of the program.

In order to evaluate the memory consumption of our system, we’ll run the Misc benchmark across

all different execution modes and compare the resource utilization using time -v. To measure this, we’ll
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extract the Maximum Resident Set size, meaning the maximum amount of physical memory assigned to

the process. For this experiment, we ran the Misc benchmark with 50 threads.

Figure 5.11: Memory consumption across different execution modes.

Figure 5.11 shows that the memory consumption overhead is minimal when compared to a solution

without isolation, and significantly lower than the one observed for chroot. This shows that our system

is able to provide File System Virtualization without significantly increasing the memory footprint of the

program.
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6.1 Conclusions

There is a growing demand for Runtime Sharing in Serverless platforms as it reduces start-up latency

and memory footprint. In order to fully virtualize the runtime, File System Virtualization remains to be

addressed in order to ensure that function executions can execute concurrently without corrupting the

File System state.

The goal of this project was to create a lightweight mechanism that enables File System sharing

among concurrent invocations running in the same process without significantly increasing memory

consumption or introducing significant latency overhead. Chroot provides an alternative that ensures

the same isolation benefits but adds significant latency and memory overhead. Additionally, chroot

works at the process level so it doesn’t ensure isolation between concurrent threads running inside the

same process making it unsuitable for platforms that aim to share the runtime efficiently across threads.
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To address File System Virtualization, we introduced a system that leverages Seccomp to intercept

and patch File System-related syscalls and implemented a copy-on-write mechanism, to ensure that

each thread only modifies its local copy of any given file. The solution uses a monitoring thread to poll

for Seccomp notifications and modify the syscalls so that they’re redirected to the appropriate copy of

the file.

We tested this implementation using different types of functions for benchmarking. By combining

read-intensive benchmarks, with benchmarks that modified and used the file content and CPU-intensive

benchmarks we were able to get an accurate picture of the system’s behavior under production-like

workloads. We found that the system was able to replicate the performance of systems that don’t pro-

vide isolation for workloads that don’t interact with the File System. For File System-intensive workloads

we saw minimal overhead for read-only operations with some significant introduced for functions that

modified and read previously modified files. If we take into account that it was only observed in work-

loads that relied almost exclusively on File System operations, with minimal computation, we expected

the overhead to be mitigated once we diversified the function types, and this is what we saw. As we

diversified the workloads, the monitor thread ceased to be overloaded and the working threads were

able to complete the functions faster as the waiting time was drastically reduced.

Overall, when we tested the system using a benchmark that combines the different functions we

saw that the performance of our system closely approximates solutions without File System isolation

and vastly outperforms chroot, as it needs to create and move to a new root in every invocation as

well as loading all the needed File System context. This shows that our approach provides the benefits

of file system isolation without sacrificing performance. In contrast, Chroot-based isolation results in

significantly higher execution times and memory usage, making it impractical for high-throughput, low-

latency serverless applications.

In conclusion, this thesis presents a lightweight, efficient mechanism for File System Virtualization

in Serverless Platforms. The system delivers isolation with minimal performance impact, providing a

scalable solution that is able to handle large workloads efficiently.

6.2 Future Work

While this thesis presents promising results, there are several opportunities for future work and improve-

ment.

• The system could be integrated into existing Runtime Sharing Platforms such as GraalVM;

• Although the current system handles basic file operations, future iterations could include support

for more complex operations such as symbolic links;
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• In the current implementation, one monitoring thread is responsible for processing all the inter-

cepted syscalls. However, it can be modified to include multiple Seccomp filters with corresponding

monitor threads polling from different file descriptors for notifications, thus improving the system

performance and reducing idle time in the worker threads without the need for any additional syn-

chronization;
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